Study of $(\sigma,\tau)$-Generalized Derivations with their Composition of Semiprime Rings
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 535
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The main purpose of this paper is to study and investigate certain results concerning the $(\sigma,\tau)$-generalized derivation $D$ associated with the $(\sigma,\tau)$-derivation $d$ of semiprime and prime rings $\mathbb{R}$, where $\sigma$ and $\tau$ act as two automorphism mappings of $\mathbb{R}$. We focus on the composition of $(\sigma,\tau)$-generalized derivations of the Leibniz's formula, where we introduce the general formula to compute the composition of the $(\sigma,\tau)$-generalized derivation $D$ of $\mathbb{R}$.
Classification :
16W25 16N60, 16U80
Keywords: Semiprime rings, prime rings, $(\sigma;\tau)$-derivations, torsion free rings, commuting mappings
Keywords: Semiprime rings, prime rings, $(\sigma;\tau)$-derivations, torsion free rings, commuting mappings
@article{KJM_2019_43_4_a3,
author = {Ajda Fo\v{s}ner and Mehsin Jabel Atteya},
title = {Study of $(\sigma,\tau)${-Generalized} {Derivations} with their {Composition} of {Semiprime} {Rings}},
journal = {Kragujevac Journal of Mathematics},
pages = {535 },
publisher = {mathdoc},
volume = {43},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a3/}
}
TY - JOUR AU - Ajda Fošner AU - Mehsin Jabel Atteya TI - Study of $(\sigma,\tau)$-Generalized Derivations with their Composition of Semiprime Rings JO - Kragujevac Journal of Mathematics PY - 2019 SP - 535 VL - 43 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a3/ LA - en ID - KJM_2019_43_4_a3 ER -
%0 Journal Article %A Ajda Fošner %A Mehsin Jabel Atteya %T Study of $(\sigma,\tau)$-Generalized Derivations with their Composition of Semiprime Rings %J Kragujevac Journal of Mathematics %D 2019 %P 535 %V 43 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a3/ %G en %F KJM_2019_43_4_a3
Ajda Fošner; Mehsin Jabel Atteya. Study of $(\sigma,\tau)$-Generalized Derivations with their Composition of Semiprime Rings. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 535 . http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a3/