Spectral Properties of $NC$-Graphs
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 523
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G$ be a non-abelian group and $Z(G)$ be the center of $G$. The non-commuting graph ($NC$-graph) $\Gamma(G)$ of the group $G$ is a graph with the vertex set $G\setminus Z(G)$ and two distinct vertices $x$ and $y$ are adjacent whenever $xy \neq yx$. The aim of this paper is to prove that for given group $G$, $\frac{G}{Z(G)}\cong \Bbb{Z}_p×\Bbb{Z}_p$ if and only if $\Gamma(G)$ is a regular ($p+1$)-partite graph. Also we consider the isomorphism of the non-commuting graph with some special graphs.
Classification :
05E15 05C25, 20D99
Keywords: Non-commuting graph, centralizer, $p$-groups
Keywords: Non-commuting graph, centralizer, $p$-groups
@article{KJM_2019_43_4_a2,
author = {M. Ghorbani and Z. Gharavi-Alkhansari},
title = {Spectral {Properties} of $NC${-Graphs}},
journal = {Kragujevac Journal of Mathematics},
pages = {523 },
publisher = {mathdoc},
volume = {43},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a2/}
}
M. Ghorbani; Z. Gharavi-Alkhansari. Spectral Properties of $NC$-Graphs. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 523 . http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a2/