Spectral Properties of $NC$-Graphs
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 523

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a non-abelian group and $Z(G)$ be the center of $G$. The non-commuting graph ($NC$-graph) $\Gamma(G)$ of the group $G$ is a graph with the vertex set $G\setminus Z(G)$ and two distinct vertices $x$ and $y$ are adjacent whenever $xy \neq yx$. The aim of this paper is to prove that for given group $G$, $\frac{G}{Z(G)}\cong \Bbb{Z}_p×\Bbb{Z}_p$ if and only if $\Gamma(G)$ is a regular ($p+1$)-partite graph. Also we consider the isomorphism of the non-commuting graph with some special graphs.
Classification : 05E15 05C25, 20D99
Keywords: Non-commuting graph, centralizer, $p$-groups
@article{KJM_2019_43_4_a2,
     author = {M. Ghorbani and Z. Gharavi-Alkhansari},
     title = {Spectral {Properties} of $NC${-Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {523 },
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a2/}
}
TY  - JOUR
AU  - M. Ghorbani
AU  - Z. Gharavi-Alkhansari
TI  - Spectral Properties of $NC$-Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 523 
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a2/
LA  - en
ID  - KJM_2019_43_4_a2
ER  - 
%0 Journal Article
%A M. Ghorbani
%A Z. Gharavi-Alkhansari
%T Spectral Properties of $NC$-Graphs
%J Kragujevac Journal of Mathematics
%D 2019
%P 523 
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a2/
%G en
%F KJM_2019_43_4_a2
M. Ghorbani; Z. Gharavi-Alkhansari. Spectral Properties of $NC$-Graphs. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 523 . http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a2/