Spectral Properties of $NC$-Graphs
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 523 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a non-abelian group and $Z(G)$ be the center of $G$. The non-commuting graph ($NC$-graph) $\Gamma(G)$ of the group $G$ is a graph with the vertex set $G\setminus Z(G)$ and two distinct vertices $x$ and $y$ are adjacent whenever $xy \neq yx$. The aim of this paper is to prove that for given group $G$, $\frac{G}{Z(G)}\cong \Bbb{Z}_p×\Bbb{Z}_p$ if and only if $\Gamma(G)$ is a regular ($p+1$)-partite graph. Also we consider the isomorphism of the non-commuting graph with some special graphs.
Classification : 05E15 05C25, 20D99
Keywords: Non-commuting graph, centralizer, $p$-groups
@article{KJM_2019_43_4_a2,
     author = {M. Ghorbani and Z. Gharavi-Alkhansari},
     title = {Spectral {Properties} of $NC${-Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {523 },
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a2/}
}
TY  - JOUR
AU  - M. Ghorbani
AU  - Z. Gharavi-Alkhansari
TI  - Spectral Properties of $NC$-Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 523 
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a2/
LA  - en
ID  - KJM_2019_43_4_a2
ER  - 
%0 Journal Article
%A M. Ghorbani
%A Z. Gharavi-Alkhansari
%T Spectral Properties of $NC$-Graphs
%J Kragujevac Journal of Mathematics
%D 2019
%P 523 
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a2/
%G en
%F KJM_2019_43_4_a2
M. Ghorbani; Z. Gharavi-Alkhansari. Spectral Properties of $NC$-Graphs. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 523 . http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a2/