Basic Properties of an Eigenparameter-Dependent $q$-Boundary Value Problem
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 503
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
This paper is devoted to study a $q$-fractional boundary value problem that includes $q$-Jackson derivative in the differential equation and an eigenvalue parameter in the boundary condition. We introduced a modified Hilbert space and a symmetric operator. We illustrated the examined boundary value problem as a spectral problem for this operator. Properties of the eigenvalues and eigenfunctions are investigated and the Green's function is constructed.
Classification :
34B08 34L05
Keywords: $q$-Jackson derivative, Sturm-Liouville operator, eigenvalues and eigenfunctions
Keywords: $q$-Jackson derivative, Sturm-Liouville operator, eigenvalues and eigenfunctions
@article{KJM_2019_43_4_a0,
author = {F. Ayca Cetinkaya},
title = {Basic {Properties} of an {Eigenparameter-Dependent} $q${-Boundary} {Value} {Problem}},
journal = {Kragujevac Journal of Mathematics},
pages = {503 },
year = {2019},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a0/}
}
F. Ayca Cetinkaya. Basic Properties of an Eigenparameter-Dependent $q$-Boundary Value Problem. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 503 . http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a0/