Weakly Tripotent Rings
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 3, p. 465

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We completely characterize those rings $R$, calling them { weakly tripotent}, whose elements satisfy the equations $x^3=x$ or $x^3=-x$. This enlarges a result due to Hirano-Tominaga in Bull. Austral. Math. Soc. (1988) concerning tripotent rings.
Classification : 16D60 16S34, 16U60
Keywords: Tripotent rings, weakly tripotent rings, equations
@article{KJM_2019_43_3_a9,
     author = {Peter V. Danchev},
     title = {Weakly {Tripotent} {Rings}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {465 },
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a9/}
}
TY  - JOUR
AU  - Peter V. Danchev
TI  - Weakly Tripotent Rings
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 465 
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a9/
LA  - en
ID  - KJM_2019_43_3_a9
ER  - 
%0 Journal Article
%A Peter V. Danchev
%T Weakly Tripotent Rings
%J Kragujevac Journal of Mathematics
%D 2019
%P 465 
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a9/
%G en
%F KJM_2019_43_3_a9
Peter V. Danchev. Weakly Tripotent Rings. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 3, p. 465 . http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a9/