Even Vertex Equitable Even Labeling for Cycle Related Graphs
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 3, p. 427 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a graph with $p$ vertices and $q$ edges and $A=\{0,2,4,\ldots,q+1\}$ if $q$ is odd or $A=\{0,2,4,\ldots,q\}$ if $q$ is even. A graph $G$ is said to be an even vertex equitable even labeling if there exists a vertex labeling $f:V(G) \rightarrow A$ that induces an edge labeling $f^{*}$ defined by $f^{*}(uv)=f(u)+f(v)$ for all edges $uv$ such that for all $a$ and $b$ in $A$, $|v_{f}(a)-v_{f}(b)| \leq 1$ and the induced edge labels are $2,4,\ldots,2q$, where $v_{f}(a)$ be the number of vertices $v$ with $f(v)=a$ for $a \in A$. A graph that admits even vertex equitable even labeling is called an even vertex equitable even graph. In this paper, we prove that the graphs $C_{m} \ominus P_{n}$, $C_{n}(Q_{m})$ if $n \equiv 0,3 \pmod 4$, $\left[ P_{n};C^{(2)}_{m} \right]$ if $m \equiv 0\pmod 4$, $C_{m} *_{e} C_{n}$ and the graph obtained by duplicating an arbitrary vertex and edge of a cycle $C_{n}$ admit an even vertex equitable even labeling.
Classification : 05C78
Keywords: Vertex equitable labeling, even vertex equitable even labeling
@article{KJM_2019_43_3_a6,
     author = {A. Lourdusamy and F. Patrick},
     title = {Even {Vertex} {Equitable} {Even} {Labeling} for {Cycle} {Related} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {427 },
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a6/}
}
TY  - JOUR
AU  - A. Lourdusamy
AU  - F. Patrick
TI  - Even Vertex Equitable Even Labeling for Cycle Related Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 427 
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a6/
LA  - en
ID  - KJM_2019_43_3_a6
ER  - 
%0 Journal Article
%A A. Lourdusamy
%A F. Patrick
%T Even Vertex Equitable Even Labeling for Cycle Related Graphs
%J Kragujevac Journal of Mathematics
%D 2019
%P 427 
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a6/
%G en
%F KJM_2019_43_3_a6
A. Lourdusamy; F. Patrick. Even Vertex Equitable Even Labeling for Cycle Related Graphs. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 3, p. 427 . http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a6/