Even Vertex Equitable Even Labeling for Cycle Related Graphs
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 3, p. 427

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a graph with $p$ vertices and $q$ edges and $A=\{0,2,4,\ldots,q+1\}$ if $q$ is odd or $A=\{0,2,4,\ldots,q\}$ if $q$ is even. A graph $G$ is said to be an even vertex equitable even labeling if there exists a vertex labeling $f:V(G) \rightarrow A$ that induces an edge labeling $f^{*}$ defined by $f^{*}(uv)=f(u)+f(v)$ for all edges $uv$ such that for all $a$ and $b$ in $A$, $|v_{f}(a)-v_{f}(b)| \leq 1$ and the induced edge labels are $2,4,\ldots,2q$, where $v_{f}(a)$ be the number of vertices $v$ with $f(v)=a$ for $a \in A$. A graph that admits even vertex equitable even labeling is called an even vertex equitable even graph. In this paper, we prove that the graphs $C_{m} \ominus P_{n}$, $C_{n}(Q_{m})$ if $n \equiv 0,3 \pmod 4$, $\left[ P_{n};C^{(2)}_{m} \right]$ if $m \equiv 0\pmod 4$, $C_{m} *_{e} C_{n}$ and the graph obtained by duplicating an arbitrary vertex and edge of a cycle $C_{n}$ admit an even vertex equitable even labeling.
Classification : 05C78
Keywords: Vertex equitable labeling, even vertex equitable even labeling
@article{KJM_2019_43_3_a6,
     author = {A. Lourdusamy and F. Patrick},
     title = {Even {Vertex} {Equitable} {Even} {Labeling} for {Cycle} {Related} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {427 },
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a6/}
}
TY  - JOUR
AU  - A. Lourdusamy
AU  - F. Patrick
TI  - Even Vertex Equitable Even Labeling for Cycle Related Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 427 
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a6/
LA  - en
ID  - KJM_2019_43_3_a6
ER  - 
%0 Journal Article
%A A. Lourdusamy
%A F. Patrick
%T Even Vertex Equitable Even Labeling for Cycle Related Graphs
%J Kragujevac Journal of Mathematics
%D 2019
%P 427 
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a6/
%G en
%F KJM_2019_43_3_a6
A. Lourdusamy; F. Patrick. Even Vertex Equitable Even Labeling for Cycle Related Graphs. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 3, p. 427 . http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a6/