Some New Bounds on Randić Energy
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 3, p. 393
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G=(V,E)$ be a simple graph of order $n$ with vertex set $V=V(G)=\{v_1,v_2,\ldots,v_n\}$ and edge set $E=E(G)$. Let $d_i$ be the degree of the vertex $v_i$ in $G$ for $i=1,2,\ldots, n$. The Randić matrix ${\mathbf R}={\mathbf R}(G)=||R_{ij}||_{nxn}$ is defined by $R_{ij}=eft\{\begin{array}{cl} \dfrac{1}{qrt{d_id_j}}, \mbox{if the vertices}\hspace{0.1cm} v_i\hspace{0.1cm}\mbox{and}\hspace{0.1cm} v_j\hspace{0.1cm} \mbox{are adjacent}, 0, \mbox{otherwise}. \end{array}\right.$ The eigenvalues of matrix ${\mathbf R}$, denoted by $\rho_1,\rho_2,\ldots,\rho_n$, are called the Randić eigenvalues of graph $G$. The Randić energy of graph $G$, denoted by $RE$, is defined as $RE=RE(G)=umimits_{i=1}^n|\rho_i|.$ In this paper we establish some new upper and lower bounds on Randić energy.
Classification :
05C50
Keywords: Normalized Laplacian matrix, Randić matrix, Randić energy
Keywords: Normalized Laplacian matrix, Randić matrix, Randić energy
@article{KJM_2019_43_3_a3,
author = {E. Zogi\'c and B. Borovi\'canin},
title = {Some {New} {Bounds} on {Randi\'c} {Energy}},
journal = {Kragujevac Journal of Mathematics},
pages = {393 },
year = {2019},
volume = {43},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a3/}
}
E. Zogić; B. Borovićanin. Some New Bounds on Randić Energy. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 3, p. 393 . http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a3/