Fixed Point Theorems Under $\omega$-distance Functions and Applications to Nonlinear Integral and Fractional Differential Equations
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 3, p. 371 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we utilize the family $\mathfrak{F}$ and the notion of $\omega$-distance in an ordered $\mathcal{G}$-metric space and introduce $(F,\omega)$-contractions in order to derive some fixed point results. We also discuss the problems of Ulam-Hyers stability, well-posedness and limit shadowing property. In order to illustrate the use of our results, we apply them to nonlinear integral equations, as well as to some three-point fractional integral boundary value problems, both with numerical examples.
Classification : 47H10 47H09
Keywords: Fixed point, partially ordered set, $\mathcalG$-metric space, $\omega$-distance function, Ulam-Hyers stability, fractional integral boundary value problem
@article{KJM_2019_43_3_a2,
     author = {H. K. Nashine and R. K. Vats and Z. Kadelburg},
     title = {Fixed {Point} {Theorems} {Under} $\omega$-distance {Functions} and {Applications} to {Nonlinear} {Integral} and {Fractional} {Differential} {Equations}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {371 },
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a2/}
}
TY  - JOUR
AU  - H. K. Nashine
AU  - R. K. Vats
AU  - Z. Kadelburg
TI  - Fixed Point Theorems Under $\omega$-distance Functions and Applications to Nonlinear Integral and Fractional Differential Equations
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 371 
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a2/
LA  - en
ID  - KJM_2019_43_3_a2
ER  - 
%0 Journal Article
%A H. K. Nashine
%A R. K. Vats
%A Z. Kadelburg
%T Fixed Point Theorems Under $\omega$-distance Functions and Applications to Nonlinear Integral and Fractional Differential Equations
%J Kragujevac Journal of Mathematics
%D 2019
%P 371 
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a2/
%G en
%F KJM_2019_43_3_a2
H. K. Nashine; R. K. Vats; Z. Kadelburg. Fixed Point Theorems Under $\omega$-distance Functions and Applications to Nonlinear Integral and Fractional Differential Equations. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 3, p. 371 . http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a2/