Fixed Point Theorems Under $\omega$-distance Functions and Applications to Nonlinear Integral and Fractional Differential Equations
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 3, p. 371
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we utilize the family $\mathfrak{F}$ and the notion of $\omega$-distance in an ordered $\mathcal{G}$-metric space and introduce $(F,\omega)$-contractions in order to derive some fixed point results. We also discuss the problems of Ulam-Hyers stability, well-posedness and limit shadowing property. In order to illustrate the use of our results, we apply them to nonlinear integral equations, as well as to some three-point fractional integral boundary value problems, both with numerical examples.
Classification :
47H10 47H09
Keywords: Fixed point, partially ordered set, $\mathcalG$-metric space, $\omega$-distance function, Ulam-Hyers stability, fractional integral boundary value problem
Keywords: Fixed point, partially ordered set, $\mathcalG$-metric space, $\omega$-distance function, Ulam-Hyers stability, fractional integral boundary value problem
@article{KJM_2019_43_3_a2,
author = {H. K. Nashine and R. K. Vats and Z. Kadelburg},
title = {Fixed {Point} {Theorems} {Under} $\omega$-distance {Functions} and {Applications} to {Nonlinear} {Integral} and {Fractional} {Differential} {Equations}},
journal = {Kragujevac Journal of Mathematics},
pages = {371 },
year = {2019},
volume = {43},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a2/}
}
TY - JOUR AU - H. K. Nashine AU - R. K. Vats AU - Z. Kadelburg TI - Fixed Point Theorems Under $\omega$-distance Functions and Applications to Nonlinear Integral and Fractional Differential Equations JO - Kragujevac Journal of Mathematics PY - 2019 SP - 371 VL - 43 IS - 3 UR - http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a2/ LA - en ID - KJM_2019_43_3_a2 ER -
%0 Journal Article %A H. K. Nashine %A R. K. Vats %A Z. Kadelburg %T Fixed Point Theorems Under $\omega$-distance Functions and Applications to Nonlinear Integral and Fractional Differential Equations %J Kragujevac Journal of Mathematics %D 2019 %P 371 %V 43 %N 3 %U http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a2/ %G en %F KJM_2019_43_3_a2
H. K. Nashine; R. K. Vats; Z. Kadelburg. Fixed Point Theorems Under $\omega$-distance Functions and Applications to Nonlinear Integral and Fractional Differential Equations. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 3, p. 371 . http://geodesic.mathdoc.fr/item/KJM_2019_43_3_a2/