A New Pinching for Closed 3-dimensional Hypersurfaces
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 293

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We will give a new pinching for closed oriented 3-dimensional hypersurfaces immersed in a not necessarily complete space of constant curvature, where we always assume that the hypersurfaces have constant mean curvature $H$ and constant scalar curvature $\kappa$. The given assumptions indicate that our result touches the setting of the Chern conjecture for isoparametric hypersurfaces in spheres.
Classification : 53C42, 53C40
Keywords: minimal surfaces, pinching, constant curvature, Chern conjecture
@article{KJM_2019_43_2_a9,
     author = {S. C. de Almeida and F. G. B. Brito and M. Scherfner and S. Weiss},
     title = {A {New} {Pinching} for {Closed} 3-dimensional {Hypersurfaces}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {293 },
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a9/}
}
TY  - JOUR
AU  - S. C. de Almeida
AU  - F. G. B. Brito
AU  - M. Scherfner
AU  - S. Weiss
TI  - A New Pinching for Closed 3-dimensional Hypersurfaces
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 293 
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a9/
LA  - en
ID  - KJM_2019_43_2_a9
ER  - 
%0 Journal Article
%A S. C. de Almeida
%A F. G. B. Brito
%A M. Scherfner
%A S. Weiss
%T A New Pinching for Closed 3-dimensional Hypersurfaces
%J Kragujevac Journal of Mathematics
%D 2019
%P 293 
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a9/
%G en
%F KJM_2019_43_2_a9
S. C. de Almeida; F. G. B. Brito; M. Scherfner; S. Weiss. A New Pinching for Closed 3-dimensional Hypersurfaces. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 293 . http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a9/