A New Pinching for Closed 3-dimensional Hypersurfaces
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 293
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We will give a new pinching for closed oriented 3-dimensional hypersurfaces immersed in a not necessarily complete space of constant curvature, where we always assume that the hypersurfaces have constant mean curvature $H$ and constant scalar curvature $\kappa$. The given assumptions indicate that our result touches the setting of the Chern conjecture for isoparametric hypersurfaces in spheres.
Classification :
53C42, 53C40
Keywords: minimal surfaces, pinching, constant curvature, Chern conjecture
Keywords: minimal surfaces, pinching, constant curvature, Chern conjecture
@article{KJM_2019_43_2_a9,
author = {S. C. de Almeida and F. G. B. Brito and M. Scherfner and S. Weiss},
title = {A {New} {Pinching} for {Closed} 3-dimensional {Hypersurfaces}},
journal = {Kragujevac Journal of Mathematics},
pages = {293 },
publisher = {mathdoc},
volume = {43},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a9/}
}
TY - JOUR AU - S. C. de Almeida AU - F. G. B. Brito AU - M. Scherfner AU - S. Weiss TI - A New Pinching for Closed 3-dimensional Hypersurfaces JO - Kragujevac Journal of Mathematics PY - 2019 SP - 293 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a9/ LA - en ID - KJM_2019_43_2_a9 ER -
S. C. de Almeida; F. G. B. Brito; M. Scherfner; S. Weiss. A New Pinching for Closed 3-dimensional Hypersurfaces. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 293 . http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a9/