A New Pinching for Closed 3-dimensional Hypersurfaces
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 293
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We will give a new pinching for closed oriented 3-dimensional hypersurfaces immersed in a not necessarily complete space of constant curvature, where we always assume that the hypersurfaces have constant mean curvature $H$ and constant scalar curvature $\kappa$. The given assumptions indicate that our result touches the setting of the Chern conjecture for isoparametric hypersurfaces in spheres.
Classification :
53C42, 53C40
Keywords: minimal surfaces, pinching, constant curvature, Chern conjecture
Keywords: minimal surfaces, pinching, constant curvature, Chern conjecture
@article{KJM_2019_43_2_a9,
author = {S. C. de Almeida and F. G. B. Brito and M. Scherfner and S. Weiss},
title = {A {New} {Pinching} for {Closed} 3-dimensional {Hypersurfaces}},
journal = {Kragujevac Journal of Mathematics},
pages = {293 },
year = {2019},
volume = {43},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a9/}
}
TY - JOUR AU - S. C. de Almeida AU - F. G. B. Brito AU - M. Scherfner AU - S. Weiss TI - A New Pinching for Closed 3-dimensional Hypersurfaces JO - Kragujevac Journal of Mathematics PY - 2019 SP - 293 VL - 43 IS - 2 UR - http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a9/ LA - en ID - KJM_2019_43_2_a9 ER -
S. C. de Almeida; F. G. B. Brito; M. Scherfner; S. Weiss. A New Pinching for Closed 3-dimensional Hypersurfaces. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 293 . http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a9/