Extremely Irregular Unicyclic Graphs
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 281 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The irregularity of a graph is defined to be the sum of absolute values of the differences of the degrees of endpoints of each edge. In this paper, we present some new results on the irregularity of unicyclic graphs, and then characterize all unicyclic graphs on $n$ vertices with irregularity values greater than or equal to $n^2-9n+24$.
Classification : 05C05, 05C07, 05C35
Keywords: irregularity, vertex degree, unicyclic graphs, trees
@article{KJM_2019_43_2_a8,
     author = {R. Nasiri and A. Gholami and G. H. Fath-Tabar and H. R. Ellahi},
     title = {Extremely {Irregular} {Unicyclic} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {281 },
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a8/}
}
TY  - JOUR
AU  - R. Nasiri
AU  - A. Gholami
AU  - G. H. Fath-Tabar
AU  - H. R. Ellahi
TI  - Extremely Irregular Unicyclic Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 281 
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a8/
LA  - en
ID  - KJM_2019_43_2_a8
ER  - 
%0 Journal Article
%A R. Nasiri
%A A. Gholami
%A G. H. Fath-Tabar
%A H. R. Ellahi
%T Extremely Irregular Unicyclic Graphs
%J Kragujevac Journal of Mathematics
%D 2019
%P 281 
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a8/
%G en
%F KJM_2019_43_2_a8
R. Nasiri; A. Gholami; G. H. Fath-Tabar; H. R. Ellahi. Extremely Irregular Unicyclic Graphs. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 281 . http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a8/