Scalar Curvature for Middle Planes in Odd-dimensional Torse-forming Almost Ricci Solitons
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 275
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We derive identities for the scalar curvature of $n$ respectively $(n+1)$-dimensional planes and their orthogonal complements in an $(2n+1)$-dimensional torse-forming almost Ricci soliton. If the torse-forming vector field is an eigenvector of the Ricci endomorphism for a special eigenvalue these identities characterize the almost Ricci soliton case.
Classification :
53C15, 53C25, 53C20, 53C21
Keywords: almost Ricci soliton, torse-forming vector field, scalar curvature
Keywords: almost Ricci soliton, torse-forming vector field, scalar curvature
@article{KJM_2019_43_2_a7,
author = {Mircea Crasmareanu},
title = {Scalar {Curvature} for {Middle} {Planes} in {Odd-dimensional} {Torse-forming} {Almost} {Ricci} {Solitons}},
journal = {Kragujevac Journal of Mathematics},
pages = {275 },
year = {2019},
volume = {43},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a7/}
}
Mircea Crasmareanu. Scalar Curvature for Middle Planes in Odd-dimensional Torse-forming Almost Ricci Solitons. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 275 . http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a7/