Scalar Curvature for Middle Planes in Odd-dimensional Torse-forming Almost Ricci Solitons
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 275

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We derive identities for the scalar curvature of $n$ respectively $(n+1)$-dimensional planes and their orthogonal complements in an $(2n+1)$-dimensional torse-forming almost Ricci soliton. If the torse-forming vector field is an eigenvector of the Ricci endomorphism for a special eigenvalue these identities characterize the almost Ricci soliton case.
Classification : 53C15, 53C25, 53C20, 53C21
Keywords: almost Ricci soliton, torse-forming vector field, scalar curvature
@article{KJM_2019_43_2_a7,
     author = {Mircea Crasmareanu},
     title = {Scalar {Curvature} for {Middle} {Planes} in {Odd-dimensional} {Torse-forming} {Almost} {Ricci} {Solitons}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {275 },
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a7/}
}
TY  - JOUR
AU  - Mircea Crasmareanu
TI  - Scalar Curvature for Middle Planes in Odd-dimensional Torse-forming Almost Ricci Solitons
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 275 
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a7/
LA  - en
ID  - KJM_2019_43_2_a7
ER  - 
%0 Journal Article
%A Mircea Crasmareanu
%T Scalar Curvature for Middle Planes in Odd-dimensional Torse-forming Almost Ricci Solitons
%J Kragujevac Journal of Mathematics
%D 2019
%P 275 
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a7/
%G en
%F KJM_2019_43_2_a7
Mircea Crasmareanu. Scalar Curvature for Middle Planes in Odd-dimensional Torse-forming Almost Ricci Solitons. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 275 . http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a7/