Scalar Curvature for Middle Planes in Odd-dimensional Torse-forming Almost Ricci Solitons
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 275 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We derive identities for the scalar curvature of $n$ respectively $(n+1)$-dimensional planes and their orthogonal complements in an $(2n+1)$-dimensional torse-forming almost Ricci soliton. If the torse-forming vector field is an eigenvector of the Ricci endomorphism for a special eigenvalue these identities characterize the almost Ricci soliton case.
Classification : 53C15, 53C25, 53C20, 53C21
Keywords: almost Ricci soliton, torse-forming vector field, scalar curvature
@article{KJM_2019_43_2_a7,
     author = {Mircea Crasmareanu},
     title = {Scalar {Curvature} for {Middle} {Planes} in {Odd-dimensional} {Torse-forming} {Almost} {Ricci} {Solitons}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {275 },
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a7/}
}
TY  - JOUR
AU  - Mircea Crasmareanu
TI  - Scalar Curvature for Middle Planes in Odd-dimensional Torse-forming Almost Ricci Solitons
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 275 
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a7/
LA  - en
ID  - KJM_2019_43_2_a7
ER  - 
%0 Journal Article
%A Mircea Crasmareanu
%T Scalar Curvature for Middle Planes in Odd-dimensional Torse-forming Almost Ricci Solitons
%J Kragujevac Journal of Mathematics
%D 2019
%P 275 
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a7/
%G en
%F KJM_2019_43_2_a7
Mircea Crasmareanu. Scalar Curvature for Middle Planes in Odd-dimensional Torse-forming Almost Ricci Solitons. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 275 . http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a7/