Scalar Curvature for Middle Planes in Odd-dimensional Torse-forming Almost Ricci Solitons
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 275
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We derive identities for the scalar curvature of $n$ respectively $(n+1)$-dimensional planes and their orthogonal complements in an $(2n+1)$-dimensional torse-forming almost Ricci soliton. If the torse-forming vector field is an eigenvector of the Ricci endomorphism for a special eigenvalue these identities characterize the almost Ricci soliton case.
Classification :
53C15, 53C25, 53C20, 53C21
Keywords: almost Ricci soliton, torse-forming vector field, scalar curvature
Keywords: almost Ricci soliton, torse-forming vector field, scalar curvature
@article{KJM_2019_43_2_a7,
author = {Mircea Crasmareanu},
title = {Scalar {Curvature} for {Middle} {Planes} in {Odd-dimensional} {Torse-forming} {Almost} {Ricci} {Solitons}},
journal = {Kragujevac Journal of Mathematics},
pages = {275 },
publisher = {mathdoc},
volume = {43},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a7/}
}
TY - JOUR AU - Mircea Crasmareanu TI - Scalar Curvature for Middle Planes in Odd-dimensional Torse-forming Almost Ricci Solitons JO - Kragujevac Journal of Mathematics PY - 2019 SP - 275 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a7/ LA - en ID - KJM_2019_43_2_a7 ER -
Mircea Crasmareanu. Scalar Curvature for Middle Planes in Odd-dimensional Torse-forming Almost Ricci Solitons. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 275 . http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a7/