$(\sigma,\tau)$-derivations of Semiprime Rings
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 239
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we investigate some results about semiprime rings $\mathbb{R}$ with a $2$-torsion-free and $\sigma$ and $\tau$ being automorphisms mappings of $\mathbb{R}$. Suppose that there exists a $(\sigma,\tau)$-derivation $d$ of $\mathbb{R}$. If $\mathbb{R}$ admits $d$ to satisfied some conditions, then $d$ is a commuting mapping of $\mathbb{R}$.
Classification :
16W25, 16N60, 16U80
Keywords: semiprime rings, prime rings, $(\sigma;\tau)$-derivations, torsion-free rings, commuting mappings
Keywords: semiprime rings, prime rings, $(\sigma;\tau)$-derivations, torsion-free rings, commuting mappings
@article{KJM_2019_43_2_a3,
author = {M. J. Atteya and C. Haetinger and D. I. Rasen},
title = {$(\sigma,\tau)$-derivations of {Semiprime} {Rings}},
journal = {Kragujevac Journal of Mathematics},
pages = {239 },
year = {2019},
volume = {43},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a3/}
}
M. J. Atteya; C. Haetinger; D. I. Rasen. $(\sigma,\tau)$-derivations of Semiprime Rings. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 239 . http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a3/