$(\sigma,\tau)$-derivations of Semiprime Rings
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 239
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we investigate some results about semiprime rings $\mathbb{R}$ with a $2$-torsion-free and $\sigma$ and $\tau$ being automorphisms mappings of $\mathbb{R}$. Suppose that there exists a $(\sigma,\tau)$-derivation $d$ of $\mathbb{R}$. If $\mathbb{R}$ admits $d$ to satisfied some conditions, then $d$ is a commuting mapping of $\mathbb{R}$.
Classification :
16W25, 16N60, 16U80
Keywords: semiprime rings, prime rings, $(\sigma;\tau)$-derivations, torsion-free rings, commuting mappings
Keywords: semiprime rings, prime rings, $(\sigma;\tau)$-derivations, torsion-free rings, commuting mappings
@article{KJM_2019_43_2_a3,
author = {M. J. Atteya and C. Haetinger and D. I. Rasen},
title = {$(\sigma,\tau)$-derivations of {Semiprime} {Rings}},
journal = {Kragujevac Journal of Mathematics},
pages = {239 },
publisher = {mathdoc},
volume = {43},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a3/}
}
M. J. Atteya; C. Haetinger; D. I. Rasen. $(\sigma,\tau)$-derivations of Semiprime Rings. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 239 . http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a3/