$(\sigma,\tau)$-derivations of Semiprime Rings
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 239 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we investigate some results about semiprime rings $\mathbb{R}$ with a $2$-torsion-free and $\sigma$ and $\tau$ being automorphisms mappings of $\mathbb{R}$. Suppose that there exists a $(\sigma,\tau)$-derivation $d$ of $\mathbb{R}$. If $\mathbb{R}$ admits $d$ to satisfied some conditions, then $d$ is a commuting mapping of $\mathbb{R}$.
Classification : 16W25, 16N60, 16U80
Keywords: semiprime rings, prime rings, $(\sigma;\tau)$-derivations, torsion-free rings, commuting mappings
@article{KJM_2019_43_2_a3,
     author = {M. J. Atteya and C. Haetinger and D. I. Rasen},
     title = {$(\sigma,\tau)$-derivations of {Semiprime} {Rings}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {239 },
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a3/}
}
TY  - JOUR
AU  - M. J. Atteya
AU  - C. Haetinger
AU  - D. I. Rasen
TI  - $(\sigma,\tau)$-derivations of Semiprime Rings
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 239 
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a3/
LA  - en
ID  - KJM_2019_43_2_a3
ER  - 
%0 Journal Article
%A M. J. Atteya
%A C. Haetinger
%A D. I. Rasen
%T $(\sigma,\tau)$-derivations of Semiprime Rings
%J Kragujevac Journal of Mathematics
%D 2019
%P 239 
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a3/
%G en
%F KJM_2019_43_2_a3
M. J. Atteya; C. Haetinger; D. I. Rasen. $(\sigma,\tau)$-derivations of Semiprime Rings. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 239 . http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a3/