Fractional Difference Equations of Volterra Type
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 219 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this article, we devote our attention to study a few qualitative properties of linear fractional nabla difference equations of Volterra type. Under appropriate assumptions, we examine the existence, uniqueness, boundedness and stability of the solutions by means of the resolvent kernel. Examples are provided to demonstrate the applicability of established results.
Classification : 34A08, 39A23, 39A99
Keywords: fractional order, backward difference, Volterra type, convolution, resolvent, boundedness, stability, asymptotic stability
@article{KJM_2019_43_2_a2,
     author = {Jagan Mohan Jonnalagadda},
     title = {Fractional {Difference} {Equations} of {Volterra} {Type}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {219 },
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a2/}
}
TY  - JOUR
AU  - Jagan Mohan Jonnalagadda
TI  - Fractional Difference Equations of Volterra Type
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 219 
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a2/
LA  - en
ID  - KJM_2019_43_2_a2
ER  - 
%0 Journal Article
%A Jagan Mohan Jonnalagadda
%T Fractional Difference Equations of Volterra Type
%J Kragujevac Journal of Mathematics
%D 2019
%P 219 
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a2/
%G en
%F KJM_2019_43_2_a2
Jagan Mohan Jonnalagadda. Fractional Difference Equations of Volterra Type. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 219 . http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a2/