On Skew Laplacian Spectra and Skew Laplacian Energy of Digraphs
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 1, p. 87
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\mathscr{D}$ be a simple digraph with $n$ vertices, $m$ arcs having skew Laplacian eigenvalues $\nu_1, \nu_2, …, \nu_{n-1},\nu_n=0$. The skew Laplacian energy $SLE(\mathscr{D})$ of a digraph $\mathscr{D}$ is defined as $SLE(\mathscr{D})=\sum_{i=1}^{n}|\nu_i|$. We obtain upper and lower bounds for $SLE(\mathscr{D})$, which improves some previously known bounds. We also show that every even positive integer is indeed the skew Laplacian energy of some digraph.
Classification :
05C50, 05C30
Keywords: Digraphs, skew Laplacian matrix, skew Laplacian spectrum, skew Laplacian energy
Keywords: Digraphs, skew Laplacian matrix, skew Laplacian spectrum, skew Laplacian energy
@article{KJM_2019_43_1_a7,
author = {Hilal Ganie and Bilal Chat and S. Pirzada},
title = {On {Skew} {Laplacian} {Spectra} and {Skew} {Laplacian} {Energy} of {Digraphs}},
journal = {Kragujevac Journal of Mathematics},
pages = {87 },
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a7/}
}
TY - JOUR AU - Hilal Ganie AU - Bilal Chat AU - S. Pirzada TI - On Skew Laplacian Spectra and Skew Laplacian Energy of Digraphs JO - Kragujevac Journal of Mathematics PY - 2019 SP - 87 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a7/ LA - en ID - KJM_2019_43_1_a7 ER -
Hilal Ganie; Bilal Chat; S. Pirzada. On Skew Laplacian Spectra and Skew Laplacian Energy of Digraphs. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 1, p. 87 . http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a7/