On Skew Laplacian Spectra and Skew Laplacian Energy of Digraphs
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 1, p. 87
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\mathscr{D}$ be a simple digraph with $n$ vertices, $m$ arcs having skew Laplacian eigenvalues $\nu_1, \nu_2, …, \nu_{n-1},\nu_n=0$. The skew Laplacian energy $SLE(\mathscr{D})$ of a digraph $\mathscr{D}$ is defined as $SLE(\mathscr{D})=\sum_{i=1}^{n}|\nu_i|$. We obtain upper and lower bounds for $SLE(\mathscr{D})$, which improves some previously known bounds. We also show that every even positive integer is indeed the skew Laplacian energy of some digraph.
Classification :
05C50, 05C30
Keywords: Digraphs, skew Laplacian matrix, skew Laplacian spectrum, skew Laplacian energy
Keywords: Digraphs, skew Laplacian matrix, skew Laplacian spectrum, skew Laplacian energy
@article{KJM_2019_43_1_a7,
author = {Hilal Ganie and Bilal Chat and S. Pirzada},
title = {On {Skew} {Laplacian} {Spectra} and {Skew} {Laplacian} {Energy} of {Digraphs}},
journal = {Kragujevac Journal of Mathematics},
pages = {87 },
year = {2019},
volume = {43},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a7/}
}
Hilal Ganie; Bilal Chat; S. Pirzada. On Skew Laplacian Spectra and Skew Laplacian Energy of Digraphs. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 1, p. 87 . http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a7/