Remarks on the Degree Kirchhoff Index
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 1, p. 15 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a simple connected graph with $n$ vertices and $m$ edges, with normalized Laplacian eigenvalues $\rho_1\geq \rho_2\geq \cdots\geq \rho_{n-1}>\rho_n=0$. The degree Kirchhoff index $Kf^{\ast}(G)$ is defined as $Kf^{\ast}(G)=2m \sum_{i=1}^{n-1}\frac{1}{\rho_{i}}$. In this paper we obtain lower and upper bounds for $Kf^{\ast}(G)$.
Classification : 05C12 05C50
Keywords: Degree Kirchhoff index, Laplacian eigenvalues (of graph), vertex degree
@article{KJM_2019_43_1_a1,
     author = {M. Mateji\'c and I. Milovanovi\'c and E. Milovanovi\'c},
     title = {Remarks on the {Degree} {Kirchhoff} {Index}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {15 },
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a1/}
}
TY  - JOUR
AU  - M. Matejić
AU  - I. Milovanović
AU  - E. Milovanović
TI  - Remarks on the Degree Kirchhoff Index
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 15 
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a1/
LA  - en
ID  - KJM_2019_43_1_a1
ER  - 
%0 Journal Article
%A M. Matejić
%A I. Milovanović
%A E. Milovanović
%T Remarks on the Degree Kirchhoff Index
%J Kragujevac Journal of Mathematics
%D 2019
%P 15 
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a1/
%G en
%F KJM_2019_43_1_a1
M. Matejić; I. Milovanović; E. Milovanović. Remarks on the Degree Kirchhoff Index. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 1, p. 15 . http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a1/