Remarks on the Degree Kirchhoff Index
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 1, p. 15

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a simple connected graph with $n$ vertices and $m$ edges, with normalized Laplacian eigenvalues $\rho_1\geq \rho_2\geq \cdots\geq \rho_{n-1}>\rho_n=0$. The degree Kirchhoff index $Kf^{\ast}(G)$ is defined as $Kf^{\ast}(G)=2m \sum_{i=1}^{n-1}\frac{1}{\rho_{i}}$. In this paper we obtain lower and upper bounds for $Kf^{\ast}(G)$.
Classification : 05C12 05C50
Keywords: Degree Kirchhoff index, Laplacian eigenvalues (of graph), vertex degree
@article{KJM_2019_43_1_a1,
     author = {M. Mateji\'c and I. Milovanovi\'c and E. Milovanovi\'c},
     title = {Remarks on the {Degree} {Kirchhoff} {Index}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {15 },
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a1/}
}
TY  - JOUR
AU  - M. Matejić
AU  - I. Milovanović
AU  - E. Milovanović
TI  - Remarks on the Degree Kirchhoff Index
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 15 
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a1/
LA  - en
ID  - KJM_2019_43_1_a1
ER  - 
%0 Journal Article
%A M. Matejić
%A I. Milovanović
%A E. Milovanović
%T Remarks on the Degree Kirchhoff Index
%J Kragujevac Journal of Mathematics
%D 2019
%P 15 
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a1/
%G en
%F KJM_2019_43_1_a1
M. Matejić; I. Milovanović; E. Milovanović. Remarks on the Degree Kirchhoff Index. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 1, p. 15 . http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a1/