Remarks on the Degree Kirchhoff Index
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 1, p. 15
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G$ be a simple connected graph with $n$ vertices and $m$ edges, with normalized Laplacian eigenvalues $\rho_1\geq \rho_2\geq \cdots\geq \rho_{n-1}>\rho_n=0$. The degree Kirchhoff index $Kf^{\ast}(G)$ is defined as $Kf^{\ast}(G)=2m \sum_{i=1}^{n-1}\frac{1}{\rho_{i}}$. In this paper we obtain lower and upper bounds for $Kf^{\ast}(G)$.
Classification :
05C12 05C50
Keywords: Degree Kirchhoff index, Laplacian eigenvalues (of graph), vertex degree
Keywords: Degree Kirchhoff index, Laplacian eigenvalues (of graph), vertex degree
@article{KJM_2019_43_1_a1,
author = {M. Mateji\'c and I. Milovanovi\'c and E. Milovanovi\'c},
title = {Remarks on the {Degree} {Kirchhoff} {Index}},
journal = {Kragujevac Journal of Mathematics},
pages = {15 },
year = {2019},
volume = {43},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a1/}
}
M. Matejić; I. Milovanović; E. Milovanović. Remarks on the Degree Kirchhoff Index. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 1, p. 15 . http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a1/