Product Cordial Labeling of Double wheel and Double fan Related Graphs
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 1, p. 7
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
I prove that Double wheel, path union of finite copies of Double wheel are product cordial graphs. Further I prove that the graph obtained by joining two copies of double wheel by a path of arbitrary length is product cordial graph. I also prove that $DW_{n} \oplus K_{1,n}$ and $DF_{n} \oplus K_{1,n}$ are product cordial graphs.
Classification :
05C78 05C76, 05C38
Keywords: Product cordial labeling, helm, closed helm, gear graph
Keywords: Product cordial labeling, helm, closed helm, gear graph
@article{KJM_2019_43_1_a0,
author = {A. H. Rokad},
title = {Product {Cordial} {Labeling} of {Double} wheel and {Double} fan {Related} {Graphs}},
journal = {Kragujevac Journal of Mathematics},
pages = {7 },
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a0/}
}
A. H. Rokad. Product Cordial Labeling of Double wheel and Double fan Related Graphs. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 1, p. 7 . http://geodesic.mathdoc.fr/item/KJM_2019_43_1_a0/