Some Inequalities for the Numerical Radius and Rhombic Numerical Radius
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 4, p. 569
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, the definition Rhombic numerical radius is introduced and we present several numerical radius inequalities. Some applications of these inequalities are considered as well. Particular, it is shown that, if $A\in \mathcal B \left( \mathcal{H} \right)$ with the Cartesian decomposition $A=C+iD$ and $r\geq 1$, then \[\begin{aligned} mega^r(A)eq\frac{qrt{2}}{2}{ eftVertvert C+D\rvert^{2 r}+vert C-D\rvert^{2 r}\right\rVert}^{\frac{1}{2}}. \end{aligned}\]
Classification :
47A12 47A30, 47A63
Keywords: Rhombic numerical radius, numerical radius, usual operator norm
Keywords: Rhombic numerical radius, numerical radius, usual operator norm
@article{KJM_2018_42_4_a8,
author = {Akram Babri Bajmaeh and Mohsen Erfanian Omidvar},
title = {Some {Inequalities} for the {Numerical} {Radius} and {Rhombic} {Numerical} {Radius}},
journal = {Kragujevac Journal of Mathematics},
pages = {569 },
publisher = {mathdoc},
volume = {42},
number = {4},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_4_a8/}
}
TY - JOUR AU - Akram Babri Bajmaeh AU - Mohsen Erfanian Omidvar TI - Some Inequalities for the Numerical Radius and Rhombic Numerical Radius JO - Kragujevac Journal of Mathematics PY - 2018 SP - 569 VL - 42 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2018_42_4_a8/ LA - en ID - KJM_2018_42_4_a8 ER -
Akram Babri Bajmaeh; Mohsen Erfanian Omidvar. Some Inequalities for the Numerical Radius and Rhombic Numerical Radius. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 4, p. 569 . http://geodesic.mathdoc.fr/item/KJM_2018_42_4_a8/