Derivations of $BE$-Algebras from Hyper $BE$-Algebras
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 3, p. 399
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we investigate some results in ($BE$-algebras) dual $BCK$-algebras and hyper ($BE$-algebras) dual $K$-algebras. We show that by a set $X$, we can construct a hyper ($BE$-algebra) dual $K$-algebra. By concept of ($BE$-algebras) dual $BCK$-algebras and fundamental relation on hyper ($BE$-algebras) dual $K$-algebras the notion of fundamental ($BE$-algebras) dual $BCK$-algebras is introduced. We prove that any ($BE$-algebra) dual $BCK$-algebra is a fundamental ($BE$-algebra) dual $BCK$-algebra, in practical, any infinite set converts to fundamental ($BE$-algebra) dual $BCK$-algebra of itself.
Classification :
03G25, 06F35, 08B30
Keywords: (Hyper $BE$-algebra) dual hyper $K$-algebra, fundamental ($BE$-algebra) dual $BCK$-algebra
Keywords: (Hyper $BE$-algebra) dual hyper $K$-algebra, fundamental ($BE$-algebra) dual $BCK$-algebra
@article{KJM_2018_42_3_a6,
author = {M. Hamidi and A. B. Saeid},
title = {Derivations of $BE${-Algebras} from {Hyper} $BE${-Algebras}},
journal = {Kragujevac Journal of Mathematics},
pages = {399 },
publisher = {mathdoc},
volume = {42},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a6/}
}
M. Hamidi; A. B. Saeid. Derivations of $BE$-Algebras from Hyper $BE$-Algebras. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 3, p. 399 . http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a6/