Derivations of $BE$-Algebras from Hyper $BE$-Algebras
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 3, p. 399
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we investigate some results in ($BE$-algebras) dual $BCK$-algebras and hyper ($BE$-algebras) dual $K$-algebras. We show that by a set $X$, we can construct a hyper ($BE$-algebra) dual $K$-algebra. By concept of ($BE$-algebras) dual $BCK$-algebras and fundamental relation on hyper ($BE$-algebras) dual $K$-algebras the notion of fundamental ($BE$-algebras) dual $BCK$-algebras is introduced. We prove that any ($BE$-algebra) dual $BCK$-algebra is a fundamental ($BE$-algebra) dual $BCK$-algebra, in practical, any infinite set converts to fundamental ($BE$-algebra) dual $BCK$-algebra of itself.
Classification :
03G25, 06F35, 08B30
Keywords: (Hyper $BE$-algebra) dual hyper $K$-algebra, fundamental ($BE$-algebra) dual $BCK$-algebra
Keywords: (Hyper $BE$-algebra) dual hyper $K$-algebra, fundamental ($BE$-algebra) dual $BCK$-algebra
@article{KJM_2018_42_3_a6,
author = {M. Hamidi and A. B. Saeid},
title = {Derivations of $BE${-Algebras} from {Hyper} $BE${-Algebras}},
journal = {Kragujevac Journal of Mathematics},
pages = {399 },
year = {2018},
volume = {42},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a6/}
}
M. Hamidi; A. B. Saeid. Derivations of $BE$-Algebras from Hyper $BE$-Algebras. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 3, p. 399 . http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a6/