Passage of Property $(aw)$ from Two Operators to their Tensor Product
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 3, p. 389
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A Banach space operator $S$ satisfies property $(aw)$ if $\s(S)\setminus\sw(S)=E_a^0(S)$, where $E_a^0(S)$ is the set of all isolated point in the approximate point spectrum which are eigenvalues of finite multiplicity. Property $(aw)$ does not transfer from operators $A$ and $B$ to their tensor product $A\otimes B$, so we give necessary and/or sufficient conditions ensuring the passage of property $(aw)$ from $A$ and $B$ to $A\otimes B$. Perturbations by Riesz operators are considered.
Classification :
47A53, 47B20 47A10, 47A11
Keywords: tensor product, property $(aw)$, perturbation, SVEP
Keywords: tensor product, property $(aw)$, perturbation, SVEP
@article{KJM_2018_42_3_a5,
author = {M. H. M. Rashid},
title = {Passage of {Property} $(aw)$ from {Two} {Operators} to their {Tensor} {Product}},
journal = {Kragujevac Journal of Mathematics},
pages = {389 },
publisher = {mathdoc},
volume = {42},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a5/}
}
M. H. M. Rashid. Passage of Property $(aw)$ from Two Operators to their Tensor Product. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 3, p. 389 . http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a5/