Passage of Property $(aw)$ from Two Operators to their Tensor Product
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 3, p. 389

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A Banach space operator $S$ satisfies property $(aw)$ if $\s(S)\setminus\sw(S)=E_a^0(S)$, where $E_a^0(S)$ is the set of all isolated point in the approximate point spectrum which are eigenvalues of finite multiplicity. Property $(aw)$ does not transfer from operators $A$ and $B$ to their tensor product $A\otimes B$, so we give necessary and/or sufficient conditions ensuring the passage of property $(aw)$ from $A$ and $B$ to $A\otimes B$. Perturbations by Riesz operators are considered.
Classification : 47A53, 47B20 47A10, 47A11
Keywords: tensor product, property $(aw)$, perturbation, SVEP
@article{KJM_2018_42_3_a5,
     author = {M. H. M. Rashid},
     title = {Passage of {Property} $(aw)$ from {Two} {Operators} to their {Tensor} {Product}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {389 },
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a5/}
}
TY  - JOUR
AU  - M. H. M. Rashid
TI  - Passage of Property $(aw)$ from Two Operators to their Tensor Product
JO  - Kragujevac Journal of Mathematics
PY  - 2018
SP  - 389 
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a5/
LA  - en
ID  - KJM_2018_42_3_a5
ER  - 
%0 Journal Article
%A M. H. M. Rashid
%T Passage of Property $(aw)$ from Two Operators to their Tensor Product
%J Kragujevac Journal of Mathematics
%D 2018
%P 389 
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a5/
%G en
%F KJM_2018_42_3_a5
M. H. M. Rashid. Passage of Property $(aw)$ from Two Operators to their Tensor Product. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 3, p. 389 . http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a5/