Passage of Property $(aw)$ from Two Operators to their Tensor Product
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 3, p. 389
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A Banach space operator $S$ satisfies property $(aw)$ if $\s(S)\setminus\sw(S)=E_a^0(S)$, where $E_a^0(S)$ is the set of all isolated point in the approximate point spectrum which are eigenvalues of finite multiplicity. Property $(aw)$ does not transfer from operators $A$ and $B$ to their tensor product $A\otimes B$, so we give necessary and/or sufficient conditions ensuring the passage of property $(aw)$ from $A$ and $B$ to $A\otimes B$. Perturbations by Riesz operators are considered.
Classification :
47A53, 47B20 47A10, 47A11
Keywords: tensor product, property $(aw)$, perturbation, SVEP
Keywords: tensor product, property $(aw)$, perturbation, SVEP
@article{KJM_2018_42_3_a5,
author = {M. H. M. Rashid},
title = {Passage of {Property} $(aw)$ from {Two} {Operators} to their {Tensor} {Product}},
journal = {Kragujevac Journal of Mathematics},
pages = {389 },
year = {2018},
volume = {42},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a5/}
}
M. H. M. Rashid. Passage of Property $(aw)$ from Two Operators to their Tensor Product. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 3, p. 389 . http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a5/