Approximation Results by Certain Genuine Operators of Integral Type
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 3, p. 335 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the present article we propose genuine Lupaş-Beta operators of integral type. We establish quantitative asymptotic formula and a direct estimate in terms of second order modulus of continuity. Finally we consider the Bézier variant and obtain the rate of convergence for functions having derivatives of BV.
Classification : 41A25 41A30
Keywords: Moments, factorial polynomials, Beta basis function, direct estimates, weighted modulus of continuity, $K$-functionals, bounded variation
@article{KJM_2018_42_3_a1,
     author = {Vijay Gupta and Deepika Agrawal},
     title = {Approximation {Results} by {Certain} {Genuine} {Operators} of {Integral} {Type}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {335 },
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a1/}
}
TY  - JOUR
AU  - Vijay Gupta
AU  - Deepika Agrawal
TI  - Approximation Results by Certain Genuine Operators of Integral Type
JO  - Kragujevac Journal of Mathematics
PY  - 2018
SP  - 335 
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a1/
LA  - en
ID  - KJM_2018_42_3_a1
ER  - 
%0 Journal Article
%A Vijay Gupta
%A Deepika Agrawal
%T Approximation Results by Certain Genuine Operators of Integral Type
%J Kragujevac Journal of Mathematics
%D 2018
%P 335 
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a1/
%G en
%F KJM_2018_42_3_a1
Vijay Gupta; Deepika Agrawal. Approximation Results by Certain Genuine Operators of Integral Type. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 3, p. 335 . http://geodesic.mathdoc.fr/item/KJM_2018_42_3_a1/