On gradient $\eta$-Einstein Solitons
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 229

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If the potential vector field of an $\eta$-Einstein soliton is of gradient type, using Bochner formula, we derive from the soliton equation a nonlinear second order PDE. Under certain conditions, the existence of an $\eta$-Einstein soliton forces the manifold to be of constant scalar curvature.
Classification : 53C21, 53C25 53B50, 53C15
Keywords: Gradient $\eta$-Einstein soliton, gradient vector field, Laplace equation
@article{KJM_2018_42_2_a5,
     author = {A. M. Blaga},
     title = {On gradient $\eta${-Einstein} {Solitons}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {229 },
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a5/}
}
TY  - JOUR
AU  - A. M. Blaga
TI  - On gradient $\eta$-Einstein Solitons
JO  - Kragujevac Journal of Mathematics
PY  - 2018
SP  - 229 
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a5/
LA  - en
ID  - KJM_2018_42_2_a5
ER  - 
%0 Journal Article
%A A. M. Blaga
%T On gradient $\eta$-Einstein Solitons
%J Kragujevac Journal of Mathematics
%D 2018
%P 229 
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a5/
%G en
%F KJM_2018_42_2_a5
A. M. Blaga. On gradient $\eta$-Einstein Solitons. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 229 . http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a5/