On gradient $\eta$-Einstein Solitons
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 229
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
If the potential vector field of an $\eta$-Einstein soliton is of gradient type, using Bochner formula, we derive from the soliton equation a nonlinear second order PDE. Under certain conditions, the existence of an $\eta$-Einstein soliton forces the manifold to be of constant scalar curvature.
Classification :
53C21, 53C25 53B50, 53C15
Keywords: Gradient $\eta$-Einstein soliton, gradient vector field, Laplace equation
Keywords: Gradient $\eta$-Einstein soliton, gradient vector field, Laplace equation
@article{KJM_2018_42_2_a5,
author = {A. M. Blaga},
title = {On gradient $\eta${-Einstein} {Solitons}},
journal = {Kragujevac Journal of Mathematics},
pages = {229 },
year = {2018},
volume = {42},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a5/}
}
A. M. Blaga. On gradient $\eta$-Einstein Solitons. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 229 . http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a5/