On gradient $\eta$-Einstein Solitons
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 229 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If the potential vector field of an $\eta$-Einstein soliton is of gradient type, using Bochner formula, we derive from the soliton equation a nonlinear second order PDE. Under certain conditions, the existence of an $\eta$-Einstein soliton forces the manifold to be of constant scalar curvature.
Classification : 53C21, 53C25 53B50, 53C15
Keywords: Gradient $\eta$-Einstein soliton, gradient vector field, Laplace equation
@article{KJM_2018_42_2_a5,
     author = {A. M. Blaga},
     title = {On gradient $\eta${-Einstein} {Solitons}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {229 },
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a5/}
}
TY  - JOUR
AU  - A. M. Blaga
TI  - On gradient $\eta$-Einstein Solitons
JO  - Kragujevac Journal of Mathematics
PY  - 2018
SP  - 229 
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a5/
LA  - en
ID  - KJM_2018_42_2_a5
ER  - 
%0 Journal Article
%A A. M. Blaga
%T On gradient $\eta$-Einstein Solitons
%J Kragujevac Journal of Mathematics
%D 2018
%P 229 
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a5/
%G en
%F KJM_2018_42_2_a5
A. M. Blaga. On gradient $\eta$-Einstein Solitons. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 229 . http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a5/