The Harmonic Index of Edge-Semitotal Graphs, Total Graphs and Related Sums
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 217

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

For a connected graph $G$, there are several related graphs such as line graph $L(G)$, subdivision graph $S(G)$, vertex-semitotal graph $R(G)$, edge-semitotal graph $Q(G)$ and total graph $T(G)$ [I. Gutman, B. Furtula, �. K. Vukicevic and G. Popivoda, { On Zagreb indices and coindices}, MATCH Commun. Math. Comput. Chem. { 74} (2015), 5--16, W. Yan, B.-Y. Yang and Y.-N. Yeh, { The behavior of Wiener indices and polynomials of graphs under five graph decorations}, Appl. Math. Lett. { 20} (2007), 290--295]. Let $F$ be one of symbols $S$, $R$, $Q$ or $T$. The $F$-sum $G_1 ~ \!\! +_F ~\!\! G_2$ of two connected graphs $G_1$ and $G_2$ is a graph with vertex set $\left (V(G_1)\cup E(G_1) \right ) �V(G_2)$ in which two vertices $(u_1,v_1)$ and $(u_2,v_2)$ of $G_1 ~ \!\! +_F ~\!\! G_2$ are adjacent if and only if $\left [u_1=u_2 \in V(G_1)~\text{and} ~ v_1 v_2 \in E(G_2)\right ]$ or $\left [v_1=v_2 ~\text{and}~u_1u_2\in E(F(G)) \right ]$ [M.~Eliasi and B.~Taeri, { Four new sums of graphs and their Wiener indices}, Discrete Appl. Math. { 157} (2009), 794--803]. In this paper, we investigate the harmonic index of edge-semitotal graphs, total graphs and $F$-sum of graphs, where $F=Q$ or $T$.
Classification : 05C07 05C76
Keywords: Harmonic index, line graph, total graph, edge-semitotal graph, $F$-sum
@article{KJM_2018_42_2_a4,
     author = {B. N. Onagh},
     title = {The {Harmonic} {Index} of {Edge-Semitotal} {Graphs,} {Total} {Graphs} and {Related} {Sums}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {217 },
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a4/}
}
TY  - JOUR
AU  - B. N. Onagh
TI  - The Harmonic Index of Edge-Semitotal Graphs, Total Graphs and Related Sums
JO  - Kragujevac Journal of Mathematics
PY  - 2018
SP  - 217 
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a4/
LA  - en
ID  - KJM_2018_42_2_a4
ER  - 
%0 Journal Article
%A B. N. Onagh
%T The Harmonic Index of Edge-Semitotal Graphs, Total Graphs and Related Sums
%J Kragujevac Journal of Mathematics
%D 2018
%P 217 
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a4/
%G en
%F KJM_2018_42_2_a4
B. N. Onagh. The Harmonic Index of Edge-Semitotal Graphs, Total Graphs and Related Sums. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 217 . http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a4/