Note on the Randic Energy of Graphs
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 209 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If $G$ is a graph on $n$ vertices, and $d_i$ is the degree of its $i$-th vertex, then the Randic matrix of $G$ is the square matrix of order $n$ whose $(i, j)$-entry is equal to $1/\sqrt{d_id_j}$ if the $i$-th and $j$-th vertex of $G$ are adjacent, and zero otherwise. In this note, we obtain some new lower and upper bounds for the Randic energy.
Classification : 05C50 15A18
Keywords: Randić energy, Randić matrix, bounds
@article{KJM_2018_42_2_a3,
     author = {Jun He and Yan-Min Liu and Jun-Kang Tian},
     title = {Note on the {Randic} {Energy} of {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {209 },
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a3/}
}
TY  - JOUR
AU  - Jun He
AU  - Yan-Min Liu
AU  - Jun-Kang Tian
TI  - Note on the Randic Energy of Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2018
SP  - 209 
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a3/
LA  - en
ID  - KJM_2018_42_2_a3
ER  - 
%0 Journal Article
%A Jun He
%A Yan-Min Liu
%A Jun-Kang Tian
%T Note on the Randic Energy of Graphs
%J Kragujevac Journal of Mathematics
%D 2018
%P 209 
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a3/
%G en
%F KJM_2018_42_2_a3
Jun He; Yan-Min Liu; Jun-Kang Tian. Note on the Randic Energy of Graphs. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 209 . http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a3/