On Nontrivial Solutions of Homogeneous Dirichlet Problem for Partial Differential Equations in a Layer
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 193
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We establish the necessary and sufficient conditions of existence of nontrivial quasi-polynomial solutions of the problem in a layer for homogeneous partial differential equation with $s+1$ variables of second order in time variable and generally infinite order in other $s$ (spatial) variables with Dirichlet boundary conditions in time. We apply the differential-symbol method for constructing such quasi-polynomial solutions. We also give examples of problems for which we construct other solutions besides of quasi-polynomial ones.
Classification :
35G15 35K05
Keywords: Differential-symbol method, two-point problem for partial differential equations, multipoint problem, equations of mathematical physics
Keywords: Differential-symbol method, two-point problem for partial differential equations, multipoint problem, equations of mathematical physics
@article{KJM_2018_42_2_a2,
author = {Z. Nytrebych and V. Il and kiv and P. Pukach and O. Malanchuk},
title = {On {Nontrivial} {Solutions} of {Homogeneous} {Dirichlet} {Problem} for {Partial} {Differential} {Equations} in a {Layer}},
journal = {Kragujevac Journal of Mathematics},
pages = {193 },
year = {2018},
volume = {42},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a2/}
}
TY - JOUR AU - Z. Nytrebych AU - V. Il AU - kiv AU - P. Pukach AU - O. Malanchuk TI - On Nontrivial Solutions of Homogeneous Dirichlet Problem for Partial Differential Equations in a Layer JO - Kragujevac Journal of Mathematics PY - 2018 SP - 193 VL - 42 IS - 2 UR - http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a2/ LA - en ID - KJM_2018_42_2_a2 ER -
%0 Journal Article %A Z. Nytrebych %A V. Il %A kiv %A P. Pukach %A O. Malanchuk %T On Nontrivial Solutions of Homogeneous Dirichlet Problem for Partial Differential Equations in a Layer %J Kragujevac Journal of Mathematics %D 2018 %P 193 %V 42 %N 2 %U http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a2/ %G en %F KJM_2018_42_2_a2
Z. Nytrebych; V. Il; kiv; P. Pukach; O. Malanchuk. On Nontrivial Solutions of Homogeneous Dirichlet Problem for Partial Differential Equations in a Layer. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 193 . http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a2/