Certain Geometric Properties of Analytic Functions Associated with the Convolutions
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 161
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we define convolutions $( f\ast g( [ \alpha ] ) ) (z)$ and $( f\ast h( [ \alpha ] ) )(z)$ of functions analytic in the open unit disk with some non-zero parameter $\alpha $, satisfying certain recurring relations. Making use of admissible function method introduced by Miller and Mocanu, certain geometric properties of these convolutions are obtained. Taking specific forms of the functions $g( [ \alpha ] ) $ and $h( [\alpha ] ) $, some consequences of our results are also given.
Classification :
30C45, 30C50
Keywords: analytic functions, convolution, Dziok-Srivastava convolution operator, Jung-Kim-Srivastava integral operator, multiplier operator
Keywords: analytic functions, convolution, Dziok-Srivastava convolution operator, Jung-Kim-Srivastava integral operator, multiplier operator
@article{KJM_2018_42_2_a0,
author = {Poonam Sharma and Aditya K. Bajpai},
title = {Certain {Geometric} {Properties} of {Analytic} {Functions} {Associated} with the {Convolutions}},
journal = {Kragujevac Journal of Mathematics},
pages = {161 },
year = {2018},
volume = {42},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a0/}
}
TY - JOUR AU - Poonam Sharma AU - Aditya K. Bajpai TI - Certain Geometric Properties of Analytic Functions Associated with the Convolutions JO - Kragujevac Journal of Mathematics PY - 2018 SP - 161 VL - 42 IS - 2 UR - http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a0/ LA - en ID - KJM_2018_42_2_a0 ER -
Poonam Sharma; Aditya K. Bajpai. Certain Geometric Properties of Analytic Functions Associated with the Convolutions. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 161 . http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a0/