Certain Geometric Properties of Analytic Functions Associated with the Convolutions
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 161
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we define convolutions $( f\ast g( [ \alpha ] ) ) (z)$ and $( f\ast h( [ \alpha ] ) )(z)$ of functions analytic in the open unit disk with some non-zero parameter $\alpha $, satisfying certain recurring relations. Making use of admissible function method introduced by Miller and Mocanu, certain geometric properties of these convolutions are obtained. Taking specific forms of the functions $g( [ \alpha ] ) $ and $h( [\alpha ] ) $, some consequences of our results are also given.
Classification :
30C45, 30C50
Keywords: analytic functions, convolution, Dziok-Srivastava convolution operator, Jung-Kim-Srivastava integral operator, multiplier operator
Keywords: analytic functions, convolution, Dziok-Srivastava convolution operator, Jung-Kim-Srivastava integral operator, multiplier operator
@article{KJM_2018_42_2_a0,
author = {Poonam Sharma and Aditya K. Bajpai},
title = {Certain {Geometric} {Properties} of {Analytic} {Functions} {Associated} with the {Convolutions}},
journal = {Kragujevac Journal of Mathematics},
pages = {161 },
publisher = {mathdoc},
volume = {42},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a0/}
}
TY - JOUR AU - Poonam Sharma AU - Aditya K. Bajpai TI - Certain Geometric Properties of Analytic Functions Associated with the Convolutions JO - Kragujevac Journal of Mathematics PY - 2018 SP - 161 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a0/ LA - en ID - KJM_2018_42_2_a0 ER -
Poonam Sharma; Aditya K. Bajpai. Certain Geometric Properties of Analytic Functions Associated with the Convolutions. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 161 . http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a0/