Extremal Values of Merrifield-Simmons Index for Trees with Two Branching Vertices
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 1, p. 97
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we find trees with minimal and maximal Merrifield-Simmons index over the set $\Omega \left( n,2\right) $ of all trees with $n$ vertices and $2$ branching vertices, and also over the subset $\Omega ^{t}\left( n,2\right) $ of all trees in $\Omega \left( n,2\right)$ such that the branching vertices are connected by the path $P_t$.
Classification :
05C69, 05C35 05C05
Keywords: Merrifield-Simmons index, trees, branching vertices
Keywords: Merrifield-Simmons index, trees, branching vertices
@article{KJM_2018_42_1_a7,
author = {Roberto Cruz and Carlos Alberto Marin and Juan Rada},
title = {Extremal {Values} of {Merrifield-Simmons} {Index} for {Trees} with {Two} {Branching} {Vertices}},
journal = {Kragujevac Journal of Mathematics},
pages = {97 },
year = {2018},
volume = {42},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_1_a7/}
}
TY - JOUR AU - Roberto Cruz AU - Carlos Alberto Marin AU - Juan Rada TI - Extremal Values of Merrifield-Simmons Index for Trees with Two Branching Vertices JO - Kragujevac Journal of Mathematics PY - 2018 SP - 97 VL - 42 IS - 1 UR - http://geodesic.mathdoc.fr/item/KJM_2018_42_1_a7/ LA - en ID - KJM_2018_42_1_a7 ER -
Roberto Cruz; Carlos Alberto Marin; Juan Rada. Extremal Values of Merrifield-Simmons Index for Trees with Two Branching Vertices. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 1, p. 97 . http://geodesic.mathdoc.fr/item/KJM_2018_42_1_a7/