New Subclass of Multivalent Hypergeometric Meromorphic Functions
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 1, p. 83
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we introduce a new class $\sum ^{*}_{p} (A,B,k)_{a,c}$ for $-1\leqslant B$ which consists of hypergeometric meromorphic functions of the form $L^{*}_{p}(a,c)f(z)= \frac{1}{z^{p}}+ \sum_{n=0}^{\infty}\frac{(a)_{n+2}}{(c)_{n+2}} a_{n+p}z^{n+p}$ in $U^{*} = \{z : 0 \left|z\right| 1\}$. We determine sufficient conditions, distortion properties, radii of starlikeness and convexity and inclusion properties for the class $L^{*}_{p}(a,c)f(z)$.
Classification :
30C45 33C20, 30C85
Keywords: $p$-valent hypergeometric functions, meromorphic functions, starlike functions, convex functions, Hadamard product
Keywords: $p$-valent hypergeometric functions, meromorphic functions, starlike functions, convex functions, Hadamard product
@article{KJM_2018_42_1_a6,
author = {M. Albehbah and M. Darus},
title = {New {Subclass} of {Multivalent} {Hypergeometric} {Meromorphic} {Functions}},
journal = {Kragujevac Journal of Mathematics},
pages = {83 },
year = {2018},
volume = {42},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_1_a6/}
}
M. Albehbah; M. Darus. New Subclass of Multivalent Hypergeometric Meromorphic Functions. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 1, p. 83 . http://geodesic.mathdoc.fr/item/KJM_2018_42_1_a6/