Periodic Solutions for Impulsive Neutral Dynamic Equations with Infinite Delay on Time Scales
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 1, p. 69
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\mathbb{T}$ be a periodic time scale. We use the Krasnoselskii's fixed point theorem to show that the impulsive neutral dynamic equations with infinite delay \begin{align*} x^{\Delta}(t)=-A(t)x^{igma}(t)+g^{\Delta}(t,x(t-h(t)))+ıt_{-ıfty}^{t}Deft( t,u\right) f(x(u))riangle u, \quad teq t_{j}, tı\mathbb{T}, x(t_{j}^{+})=x(t_{j}^{-})+I_{j}(x(t_{j})),\quad jı\mathbb{Z}^{+}\end{align*} have a periodic solution. Under a slightly more stringent conditions we show that the periodic solution is unique using the contraction mapping principle.
Classification :
34N05, 34K13 34K40, 34K45
Keywords: Periodic solutions, neutral dynamic equations, impulses, Krasnoselskii fixed point, infinite delay, time scales
Keywords: Periodic solutions, neutral dynamic equations, impulses, Krasnoselskii fixed point, infinite delay, time scales
@article{KJM_2018_42_1_a5,
author = {A. Ardjouni and A. Djoudi},
title = {Periodic {Solutions} for {Impulsive} {Neutral} {Dynamic} {Equations} with {Infinite} {Delay} on {Time} {Scales}},
journal = {Kragujevac Journal of Mathematics},
pages = {69 },
publisher = {mathdoc},
volume = {42},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_1_a5/}
}
TY - JOUR AU - A. Ardjouni AU - A. Djoudi TI - Periodic Solutions for Impulsive Neutral Dynamic Equations with Infinite Delay on Time Scales JO - Kragujevac Journal of Mathematics PY - 2018 SP - 69 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2018_42_1_a5/ LA - en ID - KJM_2018_42_1_a5 ER -
A. Ardjouni; A. Djoudi. Periodic Solutions for Impulsive Neutral Dynamic Equations with Infinite Delay on Time Scales. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 1, p. 69 . http://geodesic.mathdoc.fr/item/KJM_2018_42_1_a5/