Solution of A Partial Differential Equation Related to the Operator $\oplus_B^k$
Kragujevac Journal of Mathematics, Tome 41 (2017) no. 2, p. 251

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we consider the equation $plus _{B} ^{k}u(x)=um_{r=o}^{m}c_{r}plus _{B}^r ẹlta,$ where $\oplus _{B} ^{k}$ is the operator iterated $k$-time and is defined by $plus _{B} ^{k}=eft[eft(B_{x_{1}}+B_{x_{2}}+\cdots+B_{x_{p}}\right)^{4}-eft(B_{x_{p+1}}+B_{x_{p+2}}+\cdots+B_{x_{p+q}}\right)^{4}\right]^{k},$ where $p+q=n, x=(x_{1},\ldots , x_{n})\in \mathbb{R}^{+}_n$, $B_{x_{i}}=\frac{\partial ^{2}}{\partial x_{i}^{2}}+ \frac{2v_{i}}{x_{i}}\frac{\partial }{\partial x_{i}}$, $v_{i}=2\alpha _{i}+1$, $\alpha _{i}>-\frac{1}{2}$, $x_{i}>0$, $i=1,2,\ldots,n$, $c_{r}$ is a constant, $k$ is a nonnegative integer, $\delta$ is the Dirac-delta distribution, $\oplus _{B} ^{0}\delta =\delta$ and $n$ is the dimension of $\mathbb{R}^{+}_n$. It is shown that, depending on the relationship between $k$ and $m$, the solution to this equation can be ordinary functions, tempered distributions, or singular distributions.
Classification : 46F10 46F20
Keywords: Bessel diamond operator, O-plus operator, Dirac-delta distribution
@article{KJM_2017_41_2_a5,
     author = {S. Bupasiri},
     title = {Solution of {A} {Partial} {Differential} {Equation} {Related} to the {Operator} $\oplus_B^k$},
     journal = {Kragujevac Journal of Mathematics},
     pages = {251 },
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2017_41_2_a5/}
}
TY  - JOUR
AU  - S. Bupasiri
TI  - Solution of A Partial Differential Equation Related to the Operator $\oplus_B^k$
JO  - Kragujevac Journal of Mathematics
PY  - 2017
SP  - 251 
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2017_41_2_a5/
LA  - en
ID  - KJM_2017_41_2_a5
ER  - 
%0 Journal Article
%A S. Bupasiri
%T Solution of A Partial Differential Equation Related to the Operator $\oplus_B^k$
%J Kragujevac Journal of Mathematics
%D 2017
%P 251 
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2017_41_2_a5/
%G en
%F KJM_2017_41_2_a5
S. Bupasiri. Solution of A Partial Differential Equation Related to the Operator $\oplus_B^k$. Kragujevac Journal of Mathematics, Tome 41 (2017) no. 2, p. 251 . http://geodesic.mathdoc.fr/item/KJM_2017_41_2_a5/