Super Mean Labeling of Some Subdivision Graphs
Kragujevac Journal of Mathematics, Tome 41 (2017) no. 2, p. 179 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a graph and $f:V(G)\rightarrow\{1,2,3,�,p+q\}$ be an injection. For each edge $e=uv$, the induced edge labeling $f^*$ is defined as follows: \[f^*(e)=\begin{cases} \frac{f(u)+f(v)}{2},\quadext{if $f(u)+f(v)$ is even,} \frac{f(u)+f(v)+1}{2},\quadext{if $f(u)+f(v)$ is odd.} \end{cases} \] Then $f$ is called super mean labeling if $f(V(G))\cup \{f^*(e):e\in E(G)\}=\linebreak\{1,2,3,�, p+q\}$. A graph that admits a super mean labeling is called super mean graph. In this paper, we have studied the super meanness property of the subdivision of the $H$-graph $H_n$, $H_n\odot K_1, H_n\odot S_2$, slanting ladder, $T_n\odot K_1, C_n\odot K_1$ and $C_n@\,C_m$.
Classification : 05C78
Keywords: Super mean graph, super mean labeling
@article{KJM_2017_41_2_a1,
     author = {R. Vasuki and P. Sugirtha and J. Venkateswari},
     title = {Super {Mean} {Labeling} of {Some} {Subdivision} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {179 },
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2017_41_2_a1/}
}
TY  - JOUR
AU  - R. Vasuki
AU  - P. Sugirtha
AU  - J. Venkateswari
TI  - Super Mean Labeling of Some Subdivision Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2017
SP  - 179 
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2017_41_2_a1/
LA  - en
ID  - KJM_2017_41_2_a1
ER  - 
%0 Journal Article
%A R. Vasuki
%A P. Sugirtha
%A J. Venkateswari
%T Super Mean Labeling of Some Subdivision Graphs
%J Kragujevac Journal of Mathematics
%D 2017
%P 179 
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2017_41_2_a1/
%G en
%F KJM_2017_41_2_a1
R. Vasuki; P. Sugirtha; J. Venkateswari. Super Mean Labeling of Some Subdivision Graphs. Kragujevac Journal of Mathematics, Tome 41 (2017) no. 2, p. 179 . http://geodesic.mathdoc.fr/item/KJM_2017_41_2_a1/