Super Mean Labeling of Some Subdivision Graphs
Kragujevac Journal of Mathematics, Tome 41 (2017) no. 2, p. 179

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a graph and $f:V(G)\rightarrow\{1,2,3,�,p+q\}$ be an injection. For each edge $e=uv$, the induced edge labeling $f^*$ is defined as follows: \[f^*(e)=\begin{cases} \frac{f(u)+f(v)}{2},\quadext{if $f(u)+f(v)$ is even,} \frac{f(u)+f(v)+1}{2},\quadext{if $f(u)+f(v)$ is odd.} \end{cases} \] Then $f$ is called super mean labeling if $f(V(G))\cup \{f^*(e):e\in E(G)\}=\linebreak\{1,2,3,�, p+q\}$. A graph that admits a super mean labeling is called super mean graph. In this paper, we have studied the super meanness property of the subdivision of the $H$-graph $H_n$, $H_n\odot K_1, H_n\odot S_2$, slanting ladder, $T_n\odot K_1, C_n\odot K_1$ and $C_n@\,C_m$.
Classification : 05C78
Keywords: Super mean graph, super mean labeling
@article{KJM_2017_41_2_a1,
     author = {R. Vasuki and P. Sugirtha and J. Venkateswari},
     title = {Super {Mean} {Labeling} of {Some} {Subdivision} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {179 },
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2017_41_2_a1/}
}
TY  - JOUR
AU  - R. Vasuki
AU  - P. Sugirtha
AU  - J. Venkateswari
TI  - Super Mean Labeling of Some Subdivision Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2017
SP  - 179 
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2017_41_2_a1/
LA  - en
ID  - KJM_2017_41_2_a1
ER  - 
%0 Journal Article
%A R. Vasuki
%A P. Sugirtha
%A J. Venkateswari
%T Super Mean Labeling of Some Subdivision Graphs
%J Kragujevac Journal of Mathematics
%D 2017
%P 179 
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2017_41_2_a1/
%G en
%F KJM_2017_41_2_a1
R. Vasuki; P. Sugirtha; J. Venkateswari. Super Mean Labeling of Some Subdivision Graphs. Kragujevac Journal of Mathematics, Tome 41 (2017) no. 2, p. 179 . http://geodesic.mathdoc.fr/item/KJM_2017_41_2_a1/