On Generalized Derivation in Rings and Banach Algebras
Kragujevac Journal of Mathematics, Tome 41 (2017) no. 1, p. 105 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $R$ be a prime ring, $F$ be a generalized derivation associated with a derivation $d$ of $R$ and $m,n$ be the fixed positive integers. In this paper we study the case when one of the following holds: (i) $F(x)\circ_m F(y)=(x\circ y)^n$, (ii) $F(x)\circ_m d(y)=d(x\circ y)^n$ for all $x,y$ in some appropriate subset of $R$. We also examine the case where $R$ is a semiprime ring. Finally, as an application we obtain some range inclusion results of continuous or spectrally bounded generalized derivations on non-commutative Banach algebras.
Classification : 16W25 16N60, 16U80
Keywords: Prime and semiprime rings, generalized derivation, generalized polynomial identity (GPI), ideal
@article{KJM_2017_41_1_a6,
     author = {M. A. Raza and N. U. Rehman},
     title = {On {Generalized} {Derivation} in {Rings} and {Banach} {Algebras}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {105 },
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2017_41_1_a6/}
}
TY  - JOUR
AU  - M. A. Raza
AU  - N. U. Rehman
TI  - On Generalized Derivation in Rings and Banach Algebras
JO  - Kragujevac Journal of Mathematics
PY  - 2017
SP  - 105 
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2017_41_1_a6/
LA  - en
ID  - KJM_2017_41_1_a6
ER  - 
%0 Journal Article
%A M. A. Raza
%A N. U. Rehman
%T On Generalized Derivation in Rings and Banach Algebras
%J Kragujevac Journal of Mathematics
%D 2017
%P 105 
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2017_41_1_a6/
%G en
%F KJM_2017_41_1_a6
M. A. Raza; N. U. Rehman. On Generalized Derivation in Rings and Banach Algebras. Kragujevac Journal of Mathematics, Tome 41 (2017) no. 1, p. 105 . http://geodesic.mathdoc.fr/item/KJM_2017_41_1_a6/