Fractional Hermite-Hadamard Type Inequalities for Functions Whose Second Derivative are $(s,r)$-Convex in the Second Sense
Kragujevac Journal of Mathematics, Tome 40 (2016) no. 2, p. 172
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper the authors introduce a new class of convex functions called $(s,r)$-convex functions in the second sense and establish some new Hermite-Hadamard type inequalities involving Riemann-Liouville integral operator.
Classification :
26D15 26D20, 39A12
Keywords: Hermite-Hadamard inequality, convex functions, Riemann-Liouville integral operator
Keywords: Hermite-Hadamard inequality, convex functions, Riemann-Liouville integral operator
@article{KJM_2016_40_2_a3,
author = {K. Boukerrioua and T. Chiheb and B. Meftah},
title = {Fractional {Hermite-Hadamard} {Type} {Inequalities} for {Functions} {Whose} {Second} {Derivative} are $(s,r)${-Convex} in the {Second} {Sense}},
journal = {Kragujevac Journal of Mathematics},
pages = {172 },
year = {2016},
volume = {40},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2016_40_2_a3/}
}
TY - JOUR AU - K. Boukerrioua AU - T. Chiheb AU - B. Meftah TI - Fractional Hermite-Hadamard Type Inequalities for Functions Whose Second Derivative are $(s,r)$-Convex in the Second Sense JO - Kragujevac Journal of Mathematics PY - 2016 SP - 172 VL - 40 IS - 2 UR - http://geodesic.mathdoc.fr/item/KJM_2016_40_2_a3/ LA - en ID - KJM_2016_40_2_a3 ER -
%0 Journal Article %A K. Boukerrioua %A T. Chiheb %A B. Meftah %T Fractional Hermite-Hadamard Type Inequalities for Functions Whose Second Derivative are $(s,r)$-Convex in the Second Sense %J Kragujevac Journal of Mathematics %D 2016 %P 172 %V 40 %N 2 %U http://geodesic.mathdoc.fr/item/KJM_2016_40_2_a3/ %G en %F KJM_2016_40_2_a3
K. Boukerrioua; T. Chiheb; B. Meftah. Fractional Hermite-Hadamard Type Inequalities for Functions Whose Second Derivative are $(s,r)$-Convex in the Second Sense. Kragujevac Journal of Mathematics, Tome 40 (2016) no. 2, p. 172 . http://geodesic.mathdoc.fr/item/KJM_2016_40_2_a3/