On a Conjecture of Harmonic Index and Diameter of Graphs
Kragujevac Journal of Mathematics, Tome 40 (2016) no. 1, p. 73
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The Harmonic index $H(G)$ of a graph $G$ is defined as the sum of the weights $\dfrac{2}{d(u)+d(v)}$ of all edges $uv$ of $G$, where $d(u)$ denotes the degree of the vertex $u$ in $G$. In this work, we prove the conjecture $H(G)-D(G) \geq \dfrac{5}{6}-\dfrac{n}{2}$ given by Liu in 2013 when G is a unicyclic graph by giving a better bound, namely, $H(G)-D(G)\geq \dfrac{5}{3}-\dfrac{n}{2}$.
Classification :
05C07 05C12
Keywords: Harmonic index, diameter, unicyclic graph.
Keywords: Harmonic index, diameter, unicyclic graph.
@article{KJM_2016_40_1_a5,
author = {J. Amalorpava Jerline and L. Benedict Michaelraj},
title = {On a {Conjecture} of {Harmonic} {Index} and {Diameter} of {Graphs}},
journal = {Kragujevac Journal of Mathematics},
pages = {73 },
year = {2016},
volume = {40},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2016_40_1_a5/}
}
J. Amalorpava Jerline; L. Benedict Michaelraj. On a Conjecture of Harmonic Index and Diameter of Graphs. Kragujevac Journal of Mathematics, Tome 40 (2016) no. 1, p. 73 . http://geodesic.mathdoc.fr/item/KJM_2016_40_1_a5/