On a Conjecture of Harmonic Index and Diameter of Graphs
Kragujevac Journal of Mathematics, Tome 40 (2016) no. 1, p. 73

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Harmonic index $H(G)$ of a graph $G$ is defined as the sum of the weights $\dfrac{2}{d(u)+d(v)}$ of all edges $uv$ of $G$, where $d(u)$ denotes the degree of the vertex $u$ in $G$. In this work, we prove the conjecture $H(G)-D(G) \geq \dfrac{5}{6}-\dfrac{n}{2}$ given by Liu in 2013 when G is a unicyclic graph by giving a better bound, namely, $H(G)-D(G)\geq \dfrac{5}{3}-\dfrac{n}{2}$.
Classification : 05C07 05C12
Keywords: Harmonic index, diameter, unicyclic graph.
@article{KJM_2016_40_1_a5,
     author = {J. Amalorpava Jerline and L. Benedict Michaelraj},
     title = {On a {Conjecture} of {Harmonic} {Index} and {Diameter} of {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {73 },
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2016_40_1_a5/}
}
TY  - JOUR
AU  - J. Amalorpava Jerline
AU  - L. Benedict Michaelraj
TI  - On a Conjecture of Harmonic Index and Diameter of Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2016
SP  - 73 
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2016_40_1_a5/
LA  - en
ID  - KJM_2016_40_1_a5
ER  - 
%0 Journal Article
%A J. Amalorpava Jerline
%A L. Benedict Michaelraj
%T On a Conjecture of Harmonic Index and Diameter of Graphs
%J Kragujevac Journal of Mathematics
%D 2016
%P 73 
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2016_40_1_a5/
%G en
%F KJM_2016_40_1_a5
J. Amalorpava Jerline; L. Benedict Michaelraj. On a Conjecture of Harmonic Index and Diameter of Graphs. Kragujevac Journal of Mathematics, Tome 40 (2016) no. 1, p. 73 . http://geodesic.mathdoc.fr/item/KJM_2016_40_1_a5/