On a Conjecture of Harmonic Index and Diameter of Graphs
Kragujevac Journal of Mathematics, Tome 40 (2016) no. 1, p. 73 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Harmonic index $H(G)$ of a graph $G$ is defined as the sum of the weights $\dfrac{2}{d(u)+d(v)}$ of all edges $uv$ of $G$, where $d(u)$ denotes the degree of the vertex $u$ in $G$. In this work, we prove the conjecture $H(G)-D(G) \geq \dfrac{5}{6}-\dfrac{n}{2}$ given by Liu in 2013 when G is a unicyclic graph by giving a better bound, namely, $H(G)-D(G)\geq \dfrac{5}{3}-\dfrac{n}{2}$.
Classification : 05C07 05C12
Keywords: Harmonic index, diameter, unicyclic graph.
@article{KJM_2016_40_1_a5,
     author = {J. Amalorpava Jerline and L. Benedict Michaelraj},
     title = {On a {Conjecture} of {Harmonic} {Index} and {Diameter} of {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {73 },
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2016_40_1_a5/}
}
TY  - JOUR
AU  - J. Amalorpava Jerline
AU  - L. Benedict Michaelraj
TI  - On a Conjecture of Harmonic Index and Diameter of Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2016
SP  - 73 
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2016_40_1_a5/
LA  - en
ID  - KJM_2016_40_1_a5
ER  - 
%0 Journal Article
%A J. Amalorpava Jerline
%A L. Benedict Michaelraj
%T On a Conjecture of Harmonic Index and Diameter of Graphs
%J Kragujevac Journal of Mathematics
%D 2016
%P 73 
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2016_40_1_a5/
%G en
%F KJM_2016_40_1_a5
J. Amalorpava Jerline; L. Benedict Michaelraj. On a Conjecture of Harmonic Index and Diameter of Graphs. Kragujevac Journal of Mathematics, Tome 40 (2016) no. 1, p. 73 . http://geodesic.mathdoc.fr/item/KJM_2016_40_1_a5/