Compactness of matrix operators on some sequence spaces derived by Fibonacci numbers
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 217 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we apply the Hausdorff measure of noncompactness to obtain the necessary and sufficient conditions for certain matrix operators on the Fibonacci difference sequence spaces $\ell_{p}(\widehat{F})$ and $\ell_{\infty}(\widehat{F})$ to be compact, where $1\leq p\infty$.
Classification : 46A45, 11B39, 46B50
Keywords: Sequence spaces, Fibonacci numbers, compact operators, Hausdorff measure of noncompactness
@article{KJM_2015_39_2_a9,
     author = {E. E. Kara and M. Ba\c{s}ar{\i}r and M. Mursaleen},
     title = {Compactness of matrix operators on some sequence spaces derived by {Fibonacci} numbers},
     journal = {Kragujevac Journal of Mathematics},
     pages = {217 },
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a9/}
}
TY  - JOUR
AU  - E. E. Kara
AU  - M. Başarır
AU  - M. Mursaleen
TI  - Compactness of matrix operators on some sequence spaces derived by Fibonacci numbers
JO  - Kragujevac Journal of Mathematics
PY  - 2015
SP  - 217 
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a9/
LA  - en
ID  - KJM_2015_39_2_a9
ER  - 
%0 Journal Article
%A E. E. Kara
%A M. Başarır
%A M. Mursaleen
%T Compactness of matrix operators on some sequence spaces derived by Fibonacci numbers
%J Kragujevac Journal of Mathematics
%D 2015
%P 217 
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a9/
%G en
%F KJM_2015_39_2_a9
E. E. Kara; M. Başarır; M. Mursaleen. Compactness of matrix operators on some sequence spaces derived by Fibonacci numbers. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 217 . http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a9/