Laplacian Energy of Union and Cartesian Product and Laplacian Equienergetic Graphs
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 193
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The Laplacian energy of a graph $G$ with $n$ vertices and $m$ edges is defined as $LE(G) = \sum_{i=1}^{n}\left|\mu_i - 2m/n \right|$, where $\mu_1,\mu_2,\ldots,\mu_n$ are the Laplacian eigenvalues of $G$. If two graphs $G_1$ and $G_2$ have equal average vertex degrees, then $LE(G_1 \cup G_2) = LE(G_1) + LE(G_2)$. Otherwise, this identity is violated. We determine a term $\Xi$, such that $LE(G_1) + LE(G_2)-\Xi \leq LE(G_1 \cup G_2) \leq LE(G_1) + LE(G_2) +\Xi$ holds for all graphs. Further, by calculating $LE$ of the Cartesian product of some graphs, we construct new classes of Laplacian non-cospectral, Laplacian equienergetic graphs.
Classification :
05C50, 05C75
Keywords: Laplacian spectrum, Laplacian energy, Cartesian product, Laplacian equienergetic graphs
Keywords: Laplacian spectrum, Laplacian energy, Cartesian product, Laplacian equienergetic graphs
@article{KJM_2015_39_2_a7,
author = {Harishchandra S. Ramane and Gouramma A. Gudodagi and Ivan Gutman},
title = {Laplacian {Energy} of {Union} and {Cartesian} {Product} and {Laplacian} {Equienergetic} {Graphs}},
journal = {Kragujevac Journal of Mathematics},
pages = {193 },
year = {2015},
volume = {39},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a7/}
}
TY - JOUR AU - Harishchandra S. Ramane AU - Gouramma A. Gudodagi AU - Ivan Gutman TI - Laplacian Energy of Union and Cartesian Product and Laplacian Equienergetic Graphs JO - Kragujevac Journal of Mathematics PY - 2015 SP - 193 VL - 39 IS - 2 UR - http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a7/ LA - en ID - KJM_2015_39_2_a7 ER -
%0 Journal Article %A Harishchandra S. Ramane %A Gouramma A. Gudodagi %A Ivan Gutman %T Laplacian Energy of Union and Cartesian Product and Laplacian Equienergetic Graphs %J Kragujevac Journal of Mathematics %D 2015 %P 193 %V 39 %N 2 %U http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a7/ %G en %F KJM_2015_39_2_a7
Harishchandra S. Ramane; Gouramma A. Gudodagi; Ivan Gutman. Laplacian Energy of Union and Cartesian Product and Laplacian Equienergetic Graphs. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 193 . http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a7/