Laplacian Energy of Union and Cartesian Product and Laplacian Equienergetic Graphs
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 193 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Laplacian energy of a graph $G$ with $n$ vertices and $m$ edges is defined as $LE(G) = \sum_{i=1}^{n}\left|\mu_i - 2m/n \right|$, where $\mu_1,\mu_2,\ldots,\mu_n$ are the Laplacian eigenvalues of $G$. If two graphs $G_1$ and $G_2$ have equal average vertex degrees, then $LE(G_1 \cup G_2) = LE(G_1) + LE(G_2)$. Otherwise, this identity is violated. We determine a term $\Xi$, such that $LE(G_1) + LE(G_2)-\Xi \leq LE(G_1 \cup G_2) \leq LE(G_1) + LE(G_2) +\Xi$ holds for all graphs. Further, by calculating $LE$ of the Cartesian product of some graphs, we construct new classes of Laplacian non-cospectral, Laplacian equienergetic graphs.
Classification : 05C50, 05C75
Keywords: Laplacian spectrum, Laplacian energy, Cartesian product, Laplacian equienergetic graphs
@article{KJM_2015_39_2_a7,
     author = {Harishchandra S. Ramane and Gouramma A. Gudodagi and Ivan Gutman},
     title = {Laplacian {Energy} of {Union} and {Cartesian} {Product} and {Laplacian} {Equienergetic} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {193 },
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a7/}
}
TY  - JOUR
AU  - Harishchandra S. Ramane
AU  - Gouramma A. Gudodagi
AU  - Ivan Gutman
TI  - Laplacian Energy of Union and Cartesian Product and Laplacian Equienergetic Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2015
SP  - 193 
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a7/
LA  - en
ID  - KJM_2015_39_2_a7
ER  - 
%0 Journal Article
%A Harishchandra S. Ramane
%A Gouramma A. Gudodagi
%A Ivan Gutman
%T Laplacian Energy of Union and Cartesian Product and Laplacian Equienergetic Graphs
%J Kragujevac Journal of Mathematics
%D 2015
%P 193 
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a7/
%G en
%F KJM_2015_39_2_a7
Harishchandra S. Ramane; Gouramma A. Gudodagi; Ivan Gutman. Laplacian Energy of Union and Cartesian Product and Laplacian Equienergetic Graphs. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 193 . http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a7/