Galilean geometry of corresponding surfaces to production models in economics
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 173
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we study the curvature properties of the corresponding surfaces in the Galilean 3-space $\mathbb{G}_{3}$ to some production models in economics such as the generalized Cobb-Douglas, the generalized ACMS and the Allen production functions. We classify such surfaces of null curvature in $\mathbb{G}_{3}.$
Classification :
91B38 53A35, 53B25
Keywords: Generalized Cobb-Douglas production function, generalized ACMS production function, Allen production function, Galilean space, Gaussian curvature, mean curvature
Keywords: Generalized Cobb-Douglas production function, generalized ACMS production function, Allen production function, Galilean space, Gaussian curvature, mean curvature
@article{KJM_2015_39_2_a5,
author = {M. E. Aydin and S. A. Sepet},
title = {Galilean geometry of corresponding surfaces to production models in economics},
journal = {Kragujevac Journal of Mathematics},
pages = {173 },
publisher = {mathdoc},
volume = {39},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a5/}
}
TY - JOUR AU - M. E. Aydin AU - S. A. Sepet TI - Galilean geometry of corresponding surfaces to production models in economics JO - Kragujevac Journal of Mathematics PY - 2015 SP - 173 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a5/ LA - en ID - KJM_2015_39_2_a5 ER -
M. E. Aydin; S. A. Sepet. Galilean geometry of corresponding surfaces to production models in economics. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 173 . http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a5/