Galilean geometry of corresponding surfaces to production models in economics
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 173 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we study the curvature properties of the corresponding surfaces in the Galilean 3-space $\mathbb{G}_{3}$ to some production models in economics such as the generalized Cobb-Douglas, the generalized ACMS and the Allen production functions. We classify such surfaces of null curvature in $\mathbb{G}_{3}.$
Classification : 91B38 53A35, 53B25
Keywords: Generalized Cobb-Douglas production function, generalized ACMS production function, Allen production function, Galilean space, Gaussian curvature, mean curvature
@article{KJM_2015_39_2_a5,
     author = {M. E. Aydin and S. A. Sepet},
     title = {Galilean geometry of corresponding surfaces to production models in economics},
     journal = {Kragujevac Journal of Mathematics},
     pages = {173 },
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a5/}
}
TY  - JOUR
AU  - M. E. Aydin
AU  - S. A. Sepet
TI  - Galilean geometry of corresponding surfaces to production models in economics
JO  - Kragujevac Journal of Mathematics
PY  - 2015
SP  - 173 
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a5/
LA  - en
ID  - KJM_2015_39_2_a5
ER  - 
%0 Journal Article
%A M. E. Aydin
%A S. A. Sepet
%T Galilean geometry of corresponding surfaces to production models in economics
%J Kragujevac Journal of Mathematics
%D 2015
%P 173 
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a5/
%G en
%F KJM_2015_39_2_a5
M. E. Aydin; S. A. Sepet. Galilean geometry of corresponding surfaces to production models in economics. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 173 . http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a5/