Normal families of meromorphic functions concerning shared functions
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 149

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

It is mainly proved: Let $\mathfrak{F}$ be a family of meromorphic function in $\mathcal{D}$, $a(z)(\neq0)$ and $b(z)(\not\equiv0)$ be two holomorphic functions on $\mathcal{D}$. Suppose that admits the zeros of multiplicity at least 3 for each function $f \in \mathfrak{F}$. For each $f\in \mathfrak{F}$, if $f=a(z)\Leftrightarrow f'=b(z)$ , then $\mathfrak{F}$ is normal in $\mathcal{D}$. Some example shows that the multiplicity of zeros of $f$ is best in some sense. And the result of paper improve and supplement the result of Lei, Yang and Fang [J. Math. Anal. App. 364 (2010), 143-150].
Classification : 30D45
Keywords: Meromorphic functions, holomorphic functions, normal family, shared functions
@article{KJM_2015_39_2_a3,
     author = {Cheng-Xiong Sun},
     title = {Normal families of meromorphic functions concerning shared functions},
     journal = {Kragujevac Journal of Mathematics},
     pages = {149 },
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a3/}
}
TY  - JOUR
AU  - Cheng-Xiong Sun
TI  - Normal families of meromorphic functions concerning shared functions
JO  - Kragujevac Journal of Mathematics
PY  - 2015
SP  - 149 
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a3/
LA  - en
ID  - KJM_2015_39_2_a3
ER  - 
%0 Journal Article
%A Cheng-Xiong Sun
%T Normal families of meromorphic functions concerning shared functions
%J Kragujevac Journal of Mathematics
%D 2015
%P 149 
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a3/
%G en
%F KJM_2015_39_2_a3
Cheng-Xiong Sun. Normal families of meromorphic functions concerning shared functions. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 149 . http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a3/