Normal families of meromorphic functions concerning shared functions
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 149 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

It is mainly proved: Let $\mathfrak{F}$ be a family of meromorphic function in $\mathcal{D}$, $a(z)(\neq0)$ and $b(z)(\not\equiv0)$ be two holomorphic functions on $\mathcal{D}$. Suppose that admits the zeros of multiplicity at least 3 for each function $f \in \mathfrak{F}$. For each $f\in \mathfrak{F}$, if $f=a(z)\Leftrightarrow f'=b(z)$ , then $\mathfrak{F}$ is normal in $\mathcal{D}$. Some example shows that the multiplicity of zeros of $f$ is best in some sense. And the result of paper improve and supplement the result of Lei, Yang and Fang [J. Math. Anal. App. 364 (2010), 143-150].
Classification : 30D45
Keywords: Meromorphic functions, holomorphic functions, normal family, shared functions
@article{KJM_2015_39_2_a3,
     author = {Cheng-Xiong Sun},
     title = {Normal families of meromorphic functions concerning shared functions},
     journal = {Kragujevac Journal of Mathematics},
     pages = {149 },
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a3/}
}
TY  - JOUR
AU  - Cheng-Xiong Sun
TI  - Normal families of meromorphic functions concerning shared functions
JO  - Kragujevac Journal of Mathematics
PY  - 2015
SP  - 149 
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a3/
LA  - en
ID  - KJM_2015_39_2_a3
ER  - 
%0 Journal Article
%A Cheng-Xiong Sun
%T Normal families of meromorphic functions concerning shared functions
%J Kragujevac Journal of Mathematics
%D 2015
%P 149 
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a3/
%G en
%F KJM_2015_39_2_a3
Cheng-Xiong Sun. Normal families of meromorphic functions concerning shared functions. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 149 . http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a3/