New Norm Inequalities of Čebyšev Type for Power Series in Banach Algebras
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 41
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $f(\lambda)=\sum_{n=0}^{\infty }\alpha_{n}\lambda^{n}$ be a function defined by power series with complex coefficients and convergent on the open disk $D(0,R)\subset\Bbb{C}$, $R>0$ and $x,y\in\cal{B}$, a Banach algebra, with $xy=yx$. In this paper we establish some new upper bounds for the norm of the \emph{Čebyšev type difference} \[ f(ambda)f(ambda xy)-f(ambda x)f(ambda y), \] providing that the complex number $\lambda$ and the vectors $x,y\in\cal{B}$ are such that the series in the above expression are convergent. These results complement the earlier resuls obtained by the authors. Applications for some fundamental functions such as the \emph{exponential function} and the \emph{resolvent function} are provided as well.
Classification :
47A63 47A99
Keywords: Banach algebras, power series, exponential function, resolvent function, norm inequalities
Keywords: Banach algebras, power series, exponential function, resolvent function, norm inequalities
@article{KJM_2015_39_1_a4,
author = {S. S. Dragomir and M. V. Boldea and M. Megan},
title = {New {Norm} {Inequalities} of {\v{C}eby\v{s}ev} {Type} for {Power} {Series} in {Banach} {Algebras}},
journal = {Kragujevac Journal of Mathematics},
pages = {41 },
publisher = {mathdoc},
volume = {39},
number = {1},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a4/}
}
TY - JOUR AU - S. S. Dragomir AU - M. V. Boldea AU - M. Megan TI - New Norm Inequalities of Čebyšev Type for Power Series in Banach Algebras JO - Kragujevac Journal of Mathematics PY - 2015 SP - 41 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a4/ LA - en ID - KJM_2015_39_1_a4 ER -
S. S. Dragomir; M. V. Boldea; M. Megan. New Norm Inequalities of Čebyšev Type for Power Series in Banach Algebras. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 41 . http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a4/