On Neighbourly Irregular Graphs
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 31 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A connected graph $G$ is said to be neighbourly irregular graph if no two adjacent vertices of $G$ have same degree. In this paper we obtain neighbourly irregular subdivision graphs, line graphs and total graphs. The neighbourly irregularity of some graph products are also investigated.
Classification : 05C07 05C75
Keywords: Neighbourly irregular graphs, subdivision graphs, line graphs, total garphs, graph products
@article{KJM_2015_39_1_a3,
     author = {H. B. Walikar and S. B. Halkarni and H. S. Ramane and M. Tavakoli and A. R. Ashrafi},
     title = {On {Neighbourly} {Irregular} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {31 },
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a3/}
}
TY  - JOUR
AU  - H. B. Walikar
AU  - S. B. Halkarni
AU  - H. S. Ramane
AU  - M. Tavakoli
AU  - A. R. Ashrafi
TI  - On Neighbourly Irregular Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2015
SP  - 31 
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a3/
LA  - en
ID  - KJM_2015_39_1_a3
ER  - 
%0 Journal Article
%A H. B. Walikar
%A S. B. Halkarni
%A H. S. Ramane
%A M. Tavakoli
%A A. R. Ashrafi
%T On Neighbourly Irregular Graphs
%J Kragujevac Journal of Mathematics
%D 2015
%P 31 
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a3/
%G en
%F KJM_2015_39_1_a3
H. B. Walikar; S. B. Halkarni; H. S. Ramane; M. Tavakoli; A. R. Ashrafi. On Neighbourly Irregular Graphs. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 31 . http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a3/