On Neighbourly Irregular Graphs
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 31
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A connected graph $G$ is said to be neighbourly irregular graph if no two adjacent vertices of $G$ have same degree. In this paper we obtain neighbourly irregular subdivision graphs, line graphs and total graphs. The neighbourly irregularity of some graph products are also investigated.
Classification :
05C07 05C75
Keywords: Neighbourly irregular graphs, subdivision graphs, line graphs, total garphs, graph products
Keywords: Neighbourly irregular graphs, subdivision graphs, line graphs, total garphs, graph products
@article{KJM_2015_39_1_a3,
author = {H. B. Walikar and S. B. Halkarni and H. S. Ramane and M. Tavakoli and A. R. Ashrafi},
title = {On {Neighbourly} {Irregular} {Graphs}},
journal = {Kragujevac Journal of Mathematics},
pages = {31 },
publisher = {mathdoc},
volume = {39},
number = {1},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a3/}
}
TY - JOUR AU - H. B. Walikar AU - S. B. Halkarni AU - H. S. Ramane AU - M. Tavakoli AU - A. R. Ashrafi TI - On Neighbourly Irregular Graphs JO - Kragujevac Journal of Mathematics PY - 2015 SP - 31 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a3/ LA - en ID - KJM_2015_39_1_a3 ER -
H. B. Walikar; S. B. Halkarni; H. S. Ramane; M. Tavakoli; A. R. Ashrafi. On Neighbourly Irregular Graphs. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 31 . http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a3/