On Neighbourly Irregular Graphs
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 31

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A connected graph $G$ is said to be neighbourly irregular graph if no two adjacent vertices of $G$ have same degree. In this paper we obtain neighbourly irregular subdivision graphs, line graphs and total graphs. The neighbourly irregularity of some graph products are also investigated.
Classification : 05C07 05C75
Keywords: Neighbourly irregular graphs, subdivision graphs, line graphs, total garphs, graph products
@article{KJM_2015_39_1_a3,
     author = {H. B. Walikar and S. B. Halkarni and H. S. Ramane and M. Tavakoli and A. R. Ashrafi},
     title = {On {Neighbourly} {Irregular} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {31 },
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a3/}
}
TY  - JOUR
AU  - H. B. Walikar
AU  - S. B. Halkarni
AU  - H. S. Ramane
AU  - M. Tavakoli
AU  - A. R. Ashrafi
TI  - On Neighbourly Irregular Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2015
SP  - 31 
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a3/
LA  - en
ID  - KJM_2015_39_1_a3
ER  - 
%0 Journal Article
%A H. B. Walikar
%A S. B. Halkarni
%A H. S. Ramane
%A M. Tavakoli
%A A. R. Ashrafi
%T On Neighbourly Irregular Graphs
%J Kragujevac Journal of Mathematics
%D 2015
%P 31 
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a3/
%G en
%F KJM_2015_39_1_a3
H. B. Walikar; S. B. Halkarni; H. S. Ramane; M. Tavakoli; A. R. Ashrafi. On Neighbourly Irregular Graphs. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 31 . http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a3/