On Neighbourly Irregular Graphs
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 31
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A connected graph $G$ is said to be neighbourly irregular graph if no two adjacent vertices of $G$ have same degree. In this paper we obtain neighbourly irregular subdivision graphs, line graphs and total graphs. The neighbourly irregularity of some graph products are also investigated.
Classification :
05C07 05C75
Keywords: Neighbourly irregular graphs, subdivision graphs, line graphs, total garphs, graph products
Keywords: Neighbourly irregular graphs, subdivision graphs, line graphs, total garphs, graph products
@article{KJM_2015_39_1_a3,
author = {H. B. Walikar and S. B. Halkarni and H. S. Ramane and M. Tavakoli and A. R. Ashrafi},
title = {On {Neighbourly} {Irregular} {Graphs}},
journal = {Kragujevac Journal of Mathematics},
pages = {31 },
year = {2015},
volume = {39},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a3/}
}
TY - JOUR AU - H. B. Walikar AU - S. B. Halkarni AU - H. S. Ramane AU - M. Tavakoli AU - A. R. Ashrafi TI - On Neighbourly Irregular Graphs JO - Kragujevac Journal of Mathematics PY - 2015 SP - 31 VL - 39 IS - 1 UR - http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a3/ LA - en ID - KJM_2015_39_1_a3 ER -
H. B. Walikar; S. B. Halkarni; H. S. Ramane; M. Tavakoli; A. R. Ashrafi. On Neighbourly Irregular Graphs. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 31 . http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a3/