Soft Rough Lattice
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 13 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Rough and soft sets are both mathematical tools for dealing with uncertainty. But soft set theory is utilized for the first time, to generalize Pawlak's rough set model. Soft rough set is a connection between these two mathematical approaches to vagueness. In this study, we find a algebraic connection between soft rough set and algebraic system and thereby introduce the notion of soft rough lattice in a soft approximation space. We define the concept of a soft rough lattice, soft rough sublattice, modular soft rough lattice and distributive soft rough lattice. Finally, we cite some examples to illustrate the definitions.
@article{KJM_2015_39_1_a1,
     author = {Sankar Kumar Roy and Susanta Bera},
     title = {Soft {Rough} {Lattice}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {13 },
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a1/}
}
TY  - JOUR
AU  - Sankar Kumar Roy
AU  - Susanta Bera
TI  - Soft Rough Lattice
JO  - Kragujevac Journal of Mathematics
PY  - 2015
SP  - 13 
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a1/
LA  - en
ID  - KJM_2015_39_1_a1
ER  - 
%0 Journal Article
%A Sankar Kumar Roy
%A Susanta Bera
%T Soft Rough Lattice
%J Kragujevac Journal of Mathematics
%D 2015
%P 13 
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a1/
%G en
%F KJM_2015_39_1_a1
Sankar Kumar Roy; Susanta Bera. Soft Rough Lattice. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 13 . http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a1/