Seidel Energy of Iterated Line Graphs of Regular Graphs
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 7
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The Seidel matrix $S(G)$ of a graph $G$ is the square matrix whose $(i,j)$-entry is equal to $-1$ or $1$ if the $i$-th and $j$-th vertices of $G$ are adjacent or non-adjacent, respectively, and is zero if $i=j$. The Seidel energy of $G$ is the sum of the absolute values of the eigenvalues of $S(G)$. We show that if $G$ is regular of order $n$ and of degree $r\geq3$, then for each $k\geq2$, the Seidel energy of the $k$-th iterated line graph of $G$ depends solely on $n$ and $r$. This result enables the construction of pairs of non-cospectral, Seidel equienergetic graphs of the same order.
Classification :
05C50, 05C07
Keywords: Seidel spectrum, Seidel energy, line graph, regular graph
Keywords: Seidel spectrum, Seidel energy, line graph, regular graph
@article{KJM_2015_39_1_a0,
author = {Harishchandra S. Ramane and Ivan Gutman and Mahadevappa M. Gundloor},
title = {Seidel {Energy} of {Iterated} {Line} {Graphs} of {Regular} {Graphs}},
journal = {Kragujevac Journal of Mathematics},
pages = {7 },
year = {2015},
volume = {39},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a0/}
}
TY - JOUR AU - Harishchandra S. Ramane AU - Ivan Gutman AU - Mahadevappa M. Gundloor TI - Seidel Energy of Iterated Line Graphs of Regular Graphs JO - Kragujevac Journal of Mathematics PY - 2015 SP - 7 VL - 39 IS - 1 UR - http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a0/ LA - en ID - KJM_2015_39_1_a0 ER -
Harishchandra S. Ramane; Ivan Gutman; Mahadevappa M. Gundloor. Seidel Energy of Iterated Line Graphs of Regular Graphs. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 7 . http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a0/