On the Domination and Total Domination Numbers of Cayley Sum Graphs Over $\Bbb{Z}_n$
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 2, p. 315 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a finite Abelian group and $S$ be a subset of $G$. The Cayley sum graph $\operatorname{Cay}^+(G,S)$ of $G$ with respect to $S$ is a graph whose vertex set is $G$ and two vertices $g$ and $h$ are joined by an edge if and only if $g+h\in S$. In this paper, we prove some basic facts on the domination and total domination numbers of Cayley sum graphs. Then, we find the sharp bounds for domination number of $\operatorname{Cay}^+(\Bbb{Z}n,S)$, where $S=\{1,2,\ldots,k\}$ and $n,k$ are positive integers with $1\leq k\leq(n-1)/2$.
Classification : 05C25
Keywords: Cayley sum graph, (total) dominating set, (total) domination number
@article{KJM_2014_38_2_a8,
     author = {M. Amooshahi and B. Taeri},
     title = {On the {Domination} and {Total} {Domination} {Numbers} of {Cayley} {Sum} {Graphs} {Over} $\Bbb{Z}_n$},
     journal = {Kragujevac Journal of Mathematics},
     pages = {315 },
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a8/}
}
TY  - JOUR
AU  - M. Amooshahi
AU  - B. Taeri
TI  - On the Domination and Total Domination Numbers of Cayley Sum Graphs Over $\Bbb{Z}_n$
JO  - Kragujevac Journal of Mathematics
PY  - 2014
SP  - 315 
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a8/
LA  - en
ID  - KJM_2014_38_2_a8
ER  - 
%0 Journal Article
%A M. Amooshahi
%A B. Taeri
%T On the Domination and Total Domination Numbers of Cayley Sum Graphs Over $\Bbb{Z}_n$
%J Kragujevac Journal of Mathematics
%D 2014
%P 315 
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a8/
%G en
%F KJM_2014_38_2_a8
M. Amooshahi; B. Taeri. On the Domination and Total Domination Numbers of Cayley Sum Graphs Over $\Bbb{Z}_n$. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 2, p. 315 . http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a8/