On the Domination and Total Domination Numbers of Cayley Sum Graphs Over $\Bbb{Z}_n$
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 2, p. 315
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G$ be a finite Abelian group and $S$ be a subset of $G$. The Cayley sum graph $\operatorname{Cay}^+(G,S)$ of $G$ with respect to $S$ is a graph whose vertex set is $G$ and two vertices $g$ and $h$ are joined by an edge if and only if $g+h\in S$. In this paper, we prove some basic facts on the domination and total domination numbers of Cayley
sum graphs. Then, we find the sharp bounds for domination number of $\operatorname{Cay}^+(\Bbb{Z}n,S)$, where $S=\{1,2,\ldots,k\}$ and $n,k$ are positive integers with $1\leq k\leq(n-1)/2$.
Classification :
05C25
Keywords: Cayley sum graph, (total) dominating set, (total) domination number
Keywords: Cayley sum graph, (total) dominating set, (total) domination number
@article{KJM_2014_38_2_a8,
author = {M. Amooshahi and B. Taeri},
title = {On the {Domination} and {Total} {Domination} {Numbers} of {Cayley} {Sum} {Graphs} {Over} $\Bbb{Z}_n$},
journal = {Kragujevac Journal of Mathematics},
pages = {315 },
year = {2014},
volume = {38},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a8/}
}
M. Amooshahi; B. Taeri. On the Domination and Total Domination Numbers of Cayley Sum Graphs Over $\Bbb{Z}_n$. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 2, p. 315 . http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a8/