New Results for a System of Two Fractional Differential Equations Involving $n$ Caputo Derivatives
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 2, p. 283
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
This paper studies a coupled system of two differential equations of arbitrary orders using Caputo approach with $n$ derivatives, $n\in N*,n\neq 1$. New existence and uniqueness results are established using Banach contraction principle. Other existence results are obtained using Schaefer and Krasnoselskii fixed point theorems. Some illustrative examples are also presented.
Classification :
34A08
Keywords: Caputo derivative, fixed point, coupled system, existence, uniqueness
Keywords: Caputo derivative, fixed point, coupled system, existence, uniqueness
@article{KJM_2014_38_2_a6,
author = {Mohamed Houas and Zoubir Dahmani},
title = {New {Results} for a {System} of {Two} {Fractional} {Differential} {Equations} {Involving} $n$ {Caputo} {Derivatives}},
journal = {Kragujevac Journal of Mathematics},
pages = {283 },
year = {2014},
volume = {38},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a6/}
}
TY - JOUR AU - Mohamed Houas AU - Zoubir Dahmani TI - New Results for a System of Two Fractional Differential Equations Involving $n$ Caputo Derivatives JO - Kragujevac Journal of Mathematics PY - 2014 SP - 283 VL - 38 IS - 2 UR - http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a6/ LA - en ID - KJM_2014_38_2_a6 ER -
Mohamed Houas; Zoubir Dahmani. New Results for a System of Two Fractional Differential Equations Involving $n$ Caputo Derivatives. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 2, p. 283 . http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a6/