Hessian Determinants of Composite Functions With Applications for Production Functions in Economics
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 2, p. 259
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
B.-Y. Chen [7] derived an explicit formula for the Hessian determinants of composite functions defined by $f=F(h_1(x_1)+\cdots+h_n(x_n))$. In this paper, we introduce a new formula for the Hessian determinants of composite functions of the form
\[
f=F(h_1(x_1)\times\cdots\times h_n(x_n))
\]
Several applications of the new formula to the well-known Cobb-Douglas production
functions in economics are also given.
Classification :
91B38 15A15
Keywords: Hessian matrix, Hessian determinant, production function, generalized Cobb-Douglas production function, composite function
Keywords: Hessian matrix, Hessian determinant, production function, generalized Cobb-Douglas production function, composite function
@article{KJM_2014_38_2_a3,
author = {M. E. Aydin and D. M. Ergut},
title = {Hessian {Determinants} of {Composite} {Functions} {With} {Applications} for {Production} {Functions} in {Economics}},
journal = {Kragujevac Journal of Mathematics},
pages = {259 },
year = {2014},
volume = {38},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a3/}
}
TY - JOUR AU - M. E. Aydin AU - D. M. Ergut TI - Hessian Determinants of Composite Functions With Applications for Production Functions in Economics JO - Kragujevac Journal of Mathematics PY - 2014 SP - 259 VL - 38 IS - 2 UR - http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a3/ LA - en ID - KJM_2014_38_2_a3 ER -
M. E. Aydin; D. M. Ergut. Hessian Determinants of Composite Functions With Applications for Production Functions in Economics. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 2, p. 259 . http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a3/