A Note on Generalized Quasi-Baer Rings
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 2, p. 245
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A ring with identity is generalized quasi-Baer if for any ideal $I$ of $R$, the right annihilator of $I^n$ is generated by an idempotent for some positive integer $n$, depending on $I$. We study the generalized quasi-Baerness of $R[x;\sigma;\delta]$ over a generalized quasi-Baer ring $R$ where $\sigma$ is an automorphism of $R$.
Classification :
16S36, 16D25
Keywords: generalized quasi-Baer rings, Ore extensions, annihilator
Keywords: generalized quasi-Baer rings, Ore extensions, annihilator
@article{KJM_2014_38_2_a1,
author = {M. Anzani and H. Haj Seyyed Javadi},
title = {A {Note} on {Generalized} {Quasi-Baer} {Rings}},
journal = {Kragujevac Journal of Mathematics},
pages = {245 },
year = {2014},
volume = {38},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a1/}
}
M. Anzani; H. Haj Seyyed Javadi. A Note on Generalized Quasi-Baer Rings. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 2, p. 245 . http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a1/