A Note on Generalized Quasi-Baer Rings
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 2, p. 245 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A ring with identity is generalized quasi-Baer if for any ideal $I$ of $R$, the right annihilator of $I^n$ is generated by an idempotent for some positive integer $n$, depending on $I$. We study the generalized quasi-Baerness of $R[x;\sigma;\delta]$ over a generalized quasi-Baer ring $R$ where $\sigma$ is an automorphism of $R$.
Classification : 16S36, 16D25
Keywords: generalized quasi-Baer rings, Ore extensions, annihilator
@article{KJM_2014_38_2_a1,
     author = {M. Anzani and H. Haj Seyyed Javadi},
     title = {A {Note} on {Generalized} {Quasi-Baer} {Rings}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {245 },
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a1/}
}
TY  - JOUR
AU  - M. Anzani
AU  - H. Haj Seyyed Javadi
TI  - A Note on Generalized Quasi-Baer Rings
JO  - Kragujevac Journal of Mathematics
PY  - 2014
SP  - 245 
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a1/
LA  - en
ID  - KJM_2014_38_2_a1
ER  - 
%0 Journal Article
%A M. Anzani
%A H. Haj Seyyed Javadi
%T A Note on Generalized Quasi-Baer Rings
%J Kragujevac Journal of Mathematics
%D 2014
%P 245 
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a1/
%G en
%F KJM_2014_38_2_a1
M. Anzani; H. Haj Seyyed Javadi. A Note on Generalized Quasi-Baer Rings. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 2, p. 245 . http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a1/