A Note on Generalized Quasi-Baer Rings
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 2, p. 245
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A ring with identity is generalized quasi-Baer if for any ideal $I$ of $R$, the right annihilator of $I^n$ is generated by an idempotent for some positive integer $n$, depending on $I$. We study the generalized quasi-Baerness of $R[x;\sigma;\delta]$ over a generalized quasi-Baer ring $R$ where $\sigma$ is an automorphism of $R$.
Classification :
16S36, 16D25
Keywords: generalized quasi-Baer rings, Ore extensions, annihilator
Keywords: generalized quasi-Baer rings, Ore extensions, annihilator
@article{KJM_2014_38_2_a1,
author = {M. Anzani and H. Haj Seyyed Javadi},
title = {A {Note} on {Generalized} {Quasi-Baer} {Rings}},
journal = {Kragujevac Journal of Mathematics},
pages = {245 },
publisher = {mathdoc},
volume = {38},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a1/}
}
M. Anzani; H. Haj Seyyed Javadi. A Note on Generalized Quasi-Baer Rings. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 2, p. 245 . http://geodesic.mathdoc.fr/item/KJM_2014_38_2_a1/