Counting Relations for General Zagreb Indices
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 95
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The first and second general Zagreb indices of a graph $G$, with vertex set $V$ and edge set $E$, are defined as $M_1^k = \sum_{v \in V} d(u)^k$ and $M_2^k = \sum_{uv \in E} [d(u), d(v)]^k$, where $d(v)$ is the degree of the vertex $v$ of $G$. We present combinatorial identities, relating $M_1^k$ and $M_2^k$ with counts of various subgraphs contained in the graph $G$.
Classification :
05C07 05C90
Keywords: Degree (of vertex), Zagreb index, General Zagreb index
Keywords: Degree (of vertex), Zagreb index, General Zagreb index
@article{KJM_2014_38_1_a6,
author = {G. Britto Antony Xavier and E. Suresh and I. Gutman},
title = {Counting {Relations} for {General} {Zagreb} {Indices}},
journal = {Kragujevac Journal of Mathematics},
pages = {95 },
year = {2014},
volume = {38},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a6/}
}
G. Britto Antony Xavier; E. Suresh; I. Gutman. Counting Relations for General Zagreb Indices. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 95 . http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a6/