Counting Relations for General Zagreb Indices
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 95 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The first and second general Zagreb indices of a graph $G$, with vertex set $V$ and edge set $E$, are defined as $M_1^k = \sum_{v \in V} d(u)^k$ and $M_2^k = \sum_{uv \in E} [d(u), d(v)]^k$, where $d(v)$ is the degree of the vertex $v$ of $G$. We present combinatorial identities, relating $M_1^k$ and $M_2^k$ with counts of various subgraphs contained in the graph $G$.
Classification : 05C07 05C90
Keywords: Degree (of vertex), Zagreb index, General Zagreb index
@article{KJM_2014_38_1_a6,
     author = {G. Britto Antony Xavier and E. Suresh and I. Gutman},
     title = {Counting {Relations} for {General} {Zagreb} {Indices}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {95 },
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a6/}
}
TY  - JOUR
AU  - G. Britto Antony Xavier
AU  - E. Suresh
AU  - I. Gutman
TI  - Counting Relations for General Zagreb Indices
JO  - Kragujevac Journal of Mathematics
PY  - 2014
SP  - 95 
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a6/
LA  - en
ID  - KJM_2014_38_1_a6
ER  - 
%0 Journal Article
%A G. Britto Antony Xavier
%A E. Suresh
%A I. Gutman
%T Counting Relations for General Zagreb Indices
%J Kragujevac Journal of Mathematics
%D 2014
%P 95 
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a6/
%G en
%F KJM_2014_38_1_a6
G. Britto Antony Xavier; E. Suresh; I. Gutman. Counting Relations for General Zagreb Indices. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 95 . http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a6/