Some Results for Roman Domination Number on Cardinal Product of Paths and Cycles
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 83 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

For a graph $G=(V,E)$, a Roman dominating function (RDF) is a function $f \colon V \to \{0,1,2\}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. The weight of an RDF equals $w(f)=\sum_{v\in V}f(v)=|V_1|+2|V_2|$ where $V_i=\{v\in V: f(v)=i\}$, $i\in \{1,2\}$. An RDF for which $w(f)$ achieves its minimum is called a $\gamma_R$-function and its weight, denoted by $\gamma_R(G)$, is called the Roman domination number. In this paper we determine a lower and the upper bounds for $\gamma_R(P_m\times P_n)$ as well as the exact value of $\lim_{m,n\to \infty} \frac{\gamma_R(P_m\times P_n)}{mn}$ where $P_m\times P_n$ stands for the cardinal product of two paths. We also present some results concerning the cardinal product of two cycles $C_m\times C_n$ as well as the exact value of $\lim_{m,n\to \infty}\frac{\gamma_R(C_m\times C_n)}{mn}$.
Classification : 05C69 05C38
Keywords: Roman dominating function, Roman domination number $\gamma_R$, Cardinal product of paths, Cardinal product of cycles
@article{KJM_2014_38_1_a5,
     author = {A. Klobu\v{c}ar and I. Pulji\'c},
     title = {Some {Results} for {Roman} {Domination} {Number} on {Cardinal} {Product} of {Paths} and {Cycles}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {83 },
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a5/}
}
TY  - JOUR
AU  - A. Klobučar
AU  - I. Puljić
TI  - Some Results for Roman Domination Number on Cardinal Product of Paths and Cycles
JO  - Kragujevac Journal of Mathematics
PY  - 2014
SP  - 83 
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a5/
LA  - en
ID  - KJM_2014_38_1_a5
ER  - 
%0 Journal Article
%A A. Klobučar
%A I. Puljić
%T Some Results for Roman Domination Number on Cardinal Product of Paths and Cycles
%J Kragujevac Journal of Mathematics
%D 2014
%P 83 
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a5/
%G en
%F KJM_2014_38_1_a5
A. Klobučar; I. Puljić. Some Results for Roman Domination Number on Cardinal Product of Paths and Cycles. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 83 . http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a5/