Abstract Multi-term Fractional Differential Equations
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 51 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The present paper is an addendum to our recent work on abstract time-fractional equations of the following form: \begin{align}abel{eq0.1} {\mathbf D}_{t}^{lpha_{n}}u(t)+ umimits_{i=1}^{n-1}A_{i}{\mathbf D}_{t}^{lpha_{i}}u(t)= A{\mathbf D}_{t}^{lpha}u(t)+f(t),\quad t > 0, u^{(k)}(0)=u_k,\quad k=0,\cdots, ceil lpha_{n}\rceil -1, \end{align} where $n\in {\mathbb N}\setminus \{1\}$, $A$ and $A_{1},\cdots, A_{n-1}$ are closed linear operators on a sequentiallycomplete locally convex space $X$, $0 eq lpha_{1}\cdots
Classification : 47D06 47D62 47D60 47D99
Keywords: Abstract time-fractional equations, $k$-regularized $(C_{1}, C_{2})$-existence and uniqueness families, Abstract Volterra equations
@article{KJM_2014_38_1_a3,
     author = {C. G. Li and M. Kosti\'c and M. Li},
     title = {Abstract {Multi-term} {Fractional} {Differential} {Equations}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {51 },
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a3/}
}
TY  - JOUR
AU  - C. G. Li
AU  - M. Kostić
AU  - M. Li
TI  - Abstract Multi-term Fractional Differential Equations
JO  - Kragujevac Journal of Mathematics
PY  - 2014
SP  - 51 
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a3/
LA  - en
ID  - KJM_2014_38_1_a3
ER  - 
%0 Journal Article
%A C. G. Li
%A M. Kostić
%A M. Li
%T Abstract Multi-term Fractional Differential Equations
%J Kragujevac Journal of Mathematics
%D 2014
%P 51 
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a3/
%G en
%F KJM_2014_38_1_a3
C. G. Li; M. Kostić; M. Li. Abstract Multi-term Fractional Differential Equations. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 51 . http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a3/