Odd Sum Labling of Some Subdivision Graphs
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 203 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

An injective function $f:V(G)\rightarrow\{0,1,2,\dots,q\}$ is an odd sum labeling if the induced edge labeling $f^*$ defined by $f^*(uv)=f(u)+f(v),$ for all $uv\in E(G)$, is bijective and $f^*(E(G))= \{1,3,5,\dots,2q-1\}$. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper, we have studied the odd sum property of the subdivision of the triangular snake, quadrilateral snake, slanting ladder, $C_pdot K_1$, $Hdot K_1$, $C_m @C_n$, the grid graph $P_mimes P_n$, duplication of a vertex of a path and duplication of a vertex of a cycle.
Classification : 05C78
Keywords: Odd sum labeling, Odd sum graphs
@article{KJM_2014_38_1_a15,
     author = {S. Arockiaraj and P. Mahalakshmi and P. Namasivayam},
     title = {Odd {Sum} {Labling} of {Some} {Subdivision} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {203 },
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a15/}
}
TY  - JOUR
AU  - S. Arockiaraj
AU  - P. Mahalakshmi
AU  - P. Namasivayam
TI  - Odd Sum Labling of Some Subdivision Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2014
SP  - 203 
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a15/
LA  - en
ID  - KJM_2014_38_1_a15
ER  - 
%0 Journal Article
%A S. Arockiaraj
%A P. Mahalakshmi
%A P. Namasivayam
%T Odd Sum Labling of Some Subdivision Graphs
%J Kragujevac Journal of Mathematics
%D 2014
%P 203 
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a15/
%G en
%F KJM_2014_38_1_a15
S. Arockiaraj; P. Mahalakshmi; P. Namasivayam. Odd Sum Labling of Some Subdivision Graphs. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 203 . http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a15/