On Some Sequence Spaces of Non-Absolute Type
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 195
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we introduce the notion of $\lambda_{v}$-convergent and bounded sequences. Further, we introduce the spaces $\ell_{\infty}^{\lambda}\left( \triangle_{v}\right)$, $c_{0}^{\lambda} \left(\triangle_{v}\right)$ and $c^{\lambda} \left( \triangle_{v} \right)$, which are BK-spaces of non-absolute type and we prove that these spaces are linearly isomorphic to the spaces $\ell_{\infty}$, $c_{0}$ and $c$, respectively. Moreover, we establish some inclusion relations between these spaces.
Classification :
46A45 46B20
Keywords: Sequence spaces of non-absolute type, BK-spaces, Difference Sequence Spaces
Keywords: Sequence spaces of non-absolute type, BK-spaces, Difference Sequence Spaces
@article{KJM_2014_38_1_a14,
author = {Sinan Ercan and Ci\u{g}dem A. Bekta\c{s}},
title = {On {Some} {Sequence} {Spaces} of {Non-Absolute} {Type}},
journal = {Kragujevac Journal of Mathematics},
pages = {195 },
year = {2014},
volume = {38},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a14/}
}
Sinan Ercan; Ciğdem A. Bektaş. On Some Sequence Spaces of Non-Absolute Type. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 195 . http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a14/