The Laplacian Spectrum of Corona of Two Graphs
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 163 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G_{1}$, $G_{2}$ be two connected graphs. Denote the corona and the edge corona of $G_{1}$, $G_{2}$ by $G_1\circ G_2$ and $G=G_{1}\diamond G_{2}$, respectively. In this paper, we compute the Laplacian spectrum of the corona $G\circ H$ of two arbitrary graphs $G$ and $H$ and the edge corona of a connected regular graph $G_{1}$ and an arbitrary graph $G_{2}$.
Classification : 05C12
Keywords: Laplacian matrix, Laplacian spectrum, Corona, Edge corona, Kronecker product
@article{KJM_2014_38_1_a10,
     author = {Qun Liu},
     title = {The {Laplacian} {Spectrum} of {Corona} of {Two} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {163 },
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a10/}
}
TY  - JOUR
AU  - Qun Liu
TI  - The Laplacian Spectrum of Corona of Two Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2014
SP  - 163 
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a10/
LA  - en
ID  - KJM_2014_38_1_a10
ER  - 
%0 Journal Article
%A Qun Liu
%T The Laplacian Spectrum of Corona of Two Graphs
%J Kragujevac Journal of Mathematics
%D 2014
%P 163 
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a10/
%G en
%F KJM_2014_38_1_a10
Qun Liu. The Laplacian Spectrum of Corona of Two Graphs. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 163 . http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a10/