The Laplacian Spectrum of Corona of Two Graphs
Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 163

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G_{1}$, $G_{2}$ be two connected graphs. Denote the corona and the edge corona of $G_{1}$, $G_{2}$ by $G_1\circ G_2$ and $G=G_{1}\diamond G_{2}$, respectively. In this paper, we compute the Laplacian spectrum of the corona $G\circ H$ of two arbitrary graphs $G$ and $H$ and the edge corona of a connected regular graph $G_{1}$ and an arbitrary graph $G_{2}$.
Classification : 05C12
Keywords: Laplacian matrix, Laplacian spectrum, Corona, Edge corona, Kronecker product
@article{KJM_2014_38_1_a10,
     author = {Qun Liu},
     title = {The {Laplacian} {Spectrum} of {Corona} of {Two} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {163 },
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a10/}
}
TY  - JOUR
AU  - Qun Liu
TI  - The Laplacian Spectrum of Corona of Two Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2014
SP  - 163 
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a10/
LA  - en
ID  - KJM_2014_38_1_a10
ER  - 
%0 Journal Article
%A Qun Liu
%T The Laplacian Spectrum of Corona of Two Graphs
%J Kragujevac Journal of Mathematics
%D 2014
%P 163 
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a10/
%G en
%F KJM_2014_38_1_a10
Qun Liu. The Laplacian Spectrum of Corona of Two Graphs. Kragujevac Journal of Mathematics, Tome 38 (2014) no. 1, p. 163 . http://geodesic.mathdoc.fr/item/KJM_2014_38_1_a10/